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ABSTRACT

In most introductory courses on electrodynamics, one is taught the electric charge
is quantised but no theoretical explanation related to this law of nature is offered.
Such an explanation is postponed to graduate courses on electrodynamics, quantum
mechanics and quantum field theory, where the famous Dirac quantisation condi-
tion is introduced, which states that a single magnetic monopole in the Universe
would explain the electric charge quantisation. Even when this condition assumes
the existence of a not-yet-detected magnetic monopole, it provides the most accepted
explanation for the observed quantisation of the electric charge. However, the usual
derivation of the Dirac quantisation condition involves the subtle concept of an “un-
observable” semi-infinite magnetised line, the so-called “Dirac string,” which may
be difficult to grasp in a first view of the subject. The purpose of this review is
to survey the concepts underlying the Dirac quantisation condition, in a way that
may be accessible to advanced undergraduate and graduate students. Some of the
discussed concepts are gauge invariance, singular potentials, single-valuedness of the
wave function, undetectability of the Dirac string and quantisation of the electro-
magnetic angular momentum. Five quantum-mechanical and three semi-classical
derivations of the Dirac quantisation condition are reviewed. In addition, a simple
derivation of this condition involving heuristic and formal arguments is presented.
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1. Introduction

In the early months of 1931, Dirac was seeking for an explanation of the observed
fact that the electric charge is always quantised [1]. In his quest for explaining this
mysterious charge quantisation, he incidentally came across with the idea of magnetic
monopoles, which turned out to be of vital importance for his ingenious explanation
presented in his 1931 paper [2]. In this seminal paper, Dirac envisioned hypothetical
nodal lines to be semi-infinite magnetised lines with vanishing wave function and
having the same end point, which is the singularity of the magnetic field where the
monopole is located (see Figure 1). A quantum-mechanical argument on these nodal
lines led him to his celebrated quantisation condition: qg = n~c/2. Here, q and g
denote electric and magnetic charges, ~ is the reduced Planck’s constant, c is the
speed of light, n represents an integer number, and we are adopting Gaussian units.
Dirac wrote [2]: “Thus at the end point [of nodal lines] there will be a magnetic pole of
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strength [g = n~c/(2q)].” This is the original statement by which magnetic monopoles
entered into the field of quantum mechanics. In 1948, Dirac [3] presented a relativistic
extension of his theory of magnetic monopoles, in which he drew one of his most
famous conclusions: “Thus the mere existence of one pole of strength [g] would require
all electric charges to be quantised in units of [~c/(2g)].”

Magnetic monopole

Nodal lines

Figure 1. Nodal lines as envisioned by Dirac.

For the modern reader, the Dirac argument for the quantisation of the electric
charge involving the elusive magnetic monopole is indeed ingenious. The basis of this
argument is the interaction of an electric charge with the vector potential of a magnetic
monopole attached to an infinitely long and infinitesimally thin solenoid, the so-called
“Dirac string” which is shown to be undetectable by assuming the single-valuedness of
the wave function of the electric charge, and as a consequence the Dirac quantisation
condition qg = n~c/2 is required. According to this condition, the existence of just one
monopole anywhere in the Universe would explain why the electric charge is quantised.
Indeed, if we identify the elementary magnetic charge with g0, then q = n~c/(2g0).
Now for n = 1, we have the elementary electric charge e = ~c/(2g0), which combines
with q = n~c/(2g0) to give the law expressing the quantisation of the electric charge:
q = ne. At the present time, the Dirac quantisation condition provides the most
accepted explanation for the electric charge quantisation even when it relies on the
existence of still undetected magnetic monopoles. It is pertinent to note that there
are excellent books [4–7] and reviews [8–17] on magnetic monopoles, which necessarily
touch on the subject of the Dirac quantisation condition and the Dirac string. So far,
however, a review paper dealing with the Dirac condition rather than with magnetic
monopoles seems not to appear in the standard literature. The present review attempts
to fill this gap for the benefit of the non-specialist.

Typically, the Dirac condition is discussed in graduate texts on electrodynamics
[18–20], quantum mechanics [21] and quantum field theory [22–25]. The topic is rarely
discussed in undergraduate textbooks [26]. The purpose of this review is to survey the
ideas underlying the Dirac quantisation condition, in a way that may be accessible
to advanced undergraduate as well as graduate students. After commenting on the
status of the Dirac quantisation condition, i.e., to discuss its past and present impact
on theoretical physics, we find convenient to review the derivation of the Dirac con-
dition given in Jackson’s book [18]. We next present a heuristic derivation of the this
condition in which we attempt to follow Feynman’s teaching philosophy that if we
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cannot provide an explanation for a topic at the undergraduate level then it means we
do not really understand this topic [27]. We then review four quantum-mechanical and
three semi-classical derivations of the Dirac quantisation condition. Some of the rele-
vant calculations involved in these derivations are detailed in Appendices. We think
worthwhile to gather together the basic ideas underlying these derivations in a review,
which may be accessible to advanced undergraduate and graduate students.

2. Status of the Dirac quantisation condition: past and present

To appreciate the relevance of the method followed by Dirac to introduce his quantiza-
tion condition, let us briefly outline the historical context in which Dirac derived this
condition. As is well known, Maxwell built his equations on the assumption that no free
magnetic charges exist, which is formally expressed by the equation ∇ ·B = 0. With
the advent of quantum mechanics, magnetic charges were virtually excluded because
the coupling of quantum mechanics with electrodynamics required the inclusion of the
vector potential A defined through B = ∇ ×A. But it was clear that this equation
precluded magnetic monopoles because of the well-known identity ∇ ·(∇×A)≡0. Be-
fore 1931, magnetic monopoles were irreconcilable within an electrodynamics involving
the potential A, and hence with quantum mechanics [28]. Furthermore, for quantum
physicists of the early twentieth century, magnetic monopoles were mere speculations
lacking physical content and were therefore not of interest at all in quantum theory
prior to 1931. This was the state of affairs when Dirac suggested in his 1931 paper
[2] to reconsider the idea of magnetic monopoles. Using an innovative method, Dirac
was able to reconcile the equations ∇ ·B 6= 0 and B = ∇×A, and therefore he was
successful in showing that the interaction of an electron with a magnetic monopole
was an idea fully consistent in both classical and quantum physics.

According to Dirac, the introduction of monopoles in quantum mechanics required
magnetic charges to be necessarily quantised in terms of the electric charge and that
quantisation of the latter should be in terms of the former. In his own words [2]:
“Our theory thus allows isolated magnetic poles [g], but the strength of such poles
must be quantised, the quantum [g0] being connected with the electronic charge e
by [g0 = ~c/(2e)] ... The theory also requires a quantisation of electric charge ....”
In his 1931 paper [2], Dirac seems to favor the monopole concept when he pointed
out: “... one would be surprised if Nature had made no use of it. ”. As Polchinski
has noted [29]: “From the highly precise electric charge quantisation that is seen in
nature, it is then tempting to infer that magnetic monopoles exist, and indeed Dirac
did so”. However, Dirac was very aware that isolated magnetic monopoles were still
undetected and he proposed a physical explanation for this fact. When interpreting his
result g0 = (137/2)e, he pointed out: “This means that the attractive force between
two one-quantum poles of opposite sign is 46921/4 times that between electron and
proton. This very large force may perhaps account for why poles of opposite sign have
never yet been separated.”

Let us emphasise that the true motivation of Dirac in his 1931 paper was twofold;
on one hand, he wanted to explain the electric charge quantisation and on the other, to
find the reason why the elementary electric charge had its reported experimental value.
Such motivations were explicitly clarified by Dirac in 1978 [30]: “I was not searching
for anything like monopoles at the time. What I was concerned with was the fact that
electric charge is always observed in integral multiples of the electronic charge e, and
I wanted some explanation for it. There must be some fundamental reason in nature
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why that should be so, and also there must be some reason why the charge e should
have just the value that it does have. It has the value that makes [~c/e2] approximately
137. And I was looking for some explanation of this 137.”

In his 1948 paper [3], Dirac stressed the idea that each magnetic monopole is at-
tached at the end of an “unobservable” semi-infinite string (a refinement of the nodal
lines introduced in his 1931 paper [2]). In retrospective, one can imagine that the idea
of an unobservable string might have seemed strange at that time, and if additionally
the theory was based on the existence of undetected magnetic monopoles, then it is
not difficult to understand why this theory was received sceptically by some of Dirac’s
contemporaries. In a first view, Pauli disliked the idea of magnetic monopoles and
sarcastically referred to Dirac as “Monopoleon”. But some years later, he reconsidered
his opinion by saying that [31]: “This title [Monopoleon] shall indicate that I have a
friendlier view to his theory of ‘monopoles’ than earlier: There is some mathematical
beauty in this theory.” On the other hand, Bohr, unlike Dirac, thought that one would
be surprised if Nature had made use of magnetic monopoles [32].

After Dirac’s 1931 seminal paper, Saha [33] presented in 1936 a semi-classical deriva-
tion of the Dirac quantisation condition based on the quantisation of the electromag-
netic angular momentum associated to the static configuration formed by an electric
charge and a magnetic charge separated by a finite distance, the so-called Thomson
dipole ([34], see also [35]). This same derivation was independently presented in 1949
by Wilson [36,37]. In 1944, Fierz [38] derived the Dirac condition by quantising the
electromagnetic angular momentum arising from the classical interaction of a moving
charge in the field of a stationary magnetic monopole. Schwinger [39] in 1969 used a
similar approach to derive a duality-invariant form of the Dirac condition by assuming
the existence of particles possessing both electric and magnetic charges, the so-called
dyons.

On the other hand, the Aharanov–Bohm effect [40] suggested in 1959 has been recur-
rently used to show the undetectability of the Dirac string [1,8–12,14–17,22,23,41,42],
giving a reversible argument. If Dirac’s condition holds then the string is undetectable,
and vice versa, if the string is undetectable then Dirac’s condition holds. The path-
integral approach to quantum mechanics, suggested by Dirac in 1933 [43], formally
started by Feynman in his 1942 Ph.D. thesis [44] and completed by him in 1948 [48],
has also been used to obtain the Dirac condition [22].

Several authors have criticised the Dirac argument because of its unpleasant feature
that it necessarily involves singular gauge transformations [9]. A formal approach
presented by Wu and Yang [46] in 1975 avoids such annoying feature by considering
non-singular potentials, using the single-valuedness of the wave function and then
deriving the Dirac condition without using the Dirac string [4,8,9,11–13,16,24]. Other
derivations of the Dirac condition have been presented over the years, including one
by Goldhaber [47], Wilzcek [48,49] and Jackiw [50–52].

Remarkably, in 1974 t’Hooft [53] and Polyakov [54] independently discovered
monopole solutions for spontaneously broken non-Abelian gauge theories. This orig-
inated another way to understand why electric charge is quantised in grand unified
theories, where monopoles are necessarely present. If the electromagnetic U(1) gauge
group is embedded into a non-Abelian gauge group, then charge quantisation is auto-
matic, for considerations of group theory [4,11]. It is not surprising then that charge
quantisation is now considered as an argument in support of grand unified theories
[4,29,55]. In the context of unified theories, Polchinski goes even further arguing that
[29] “In any theoretical framework that requires charge to be quantised, there will
exist magnetic monopoles.” On the other hand, it has been noted that the integer n
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in Dirac’s condition can be identified as a winding number, which gives a topological
interpretation of this condition [4,11,56]. Finally, it is pertinent to mention the recent
claim that the Dirac condition also holds in the Proca electrodynamics with non-zero
photon mass [57], reflecting the general character of this quantisation condition.

The preceding comments allow us to put in context the review presented here on the
basic ideas underpinning the Dirac quantisation condition, such as gauge invariance,
singular vector potentials, single-valuedness of the wave function, undetectibility of
the Dirac string and the quantisation of the electromagnetic angular momentum.

The present review is organised as follows. In Section 3, we closely review Jack-
son’s treatment of the Dirac quantisation condition. In Sections 3-6, we present a new
derivation of the Dirac condition based on heuristic and formal arguments, which does
not consider the Dirac string. The specific gauge function required in this heuristic
derivation is discussed. In Section 7, we examine in detail the Dirac strings by explicitly
identifying their singular sources. In Section 8, we study the classical interaction of the
electric charge with the Dirac string and conclude that this string has a mathematical
rather than a physical meaning. In Section 9, we examine the quantum-mechanical
interaction of the electric charge with the Dirac string and show that if the string is
undetectable then the Dirac quantisation condition holds. We review in Section 10 the
Aharanov–Bohm effect and show how it can be used to derive the Dirac condition.
In Section 11, we outline Feynman’s path integral approach to quantum mechanics
and show how it can be used to obtain the Dirac condition. In Section 12, we briefly
discuss the Wu–Yang approach that allows us to derive the Dirac condition without
the recourse of the Dirac string. In Section 13, we review three known semi-classical
derivations of the Dirac condition. The first one makes use of the Thomson dipole.
The second one considers the interaction between a moving charge and the field of a
stationary monopole, and the third one considers the interaction between a moving
dyon and the field of a stationary dyon. In Section 14, we make some final remarks
on the Dirac quantisation condition. In Section 15, we make a final comment on the
concept of nodal lines and in Section 16, we present our conclusions. In Appendices
A–E, we perform some calculations involved in the derivations of the Dirac condition.

3. Jackson’s treatment of the Dirac quantisation condition

The first quantum-mechanical derivation of the Dirac condition we will review is that
given in Jackson’s book [18]. The magnetic monopole is imagined either as one particle
to be at the end of a line of dipoles or at the end of a tightly wound solenoid that
stretches off to infinity, as shown in Figure 2. Any of these equivalent configurations can
be described by the vector potential of a magnetic dipoleA(x) = [m×(x−x′)]/|x−x′|3,
where x is the field point, x′ is the source point and m is the magnetic dipole moment.
The line of dipoles is a string formed by infinitesimal magnetic dipole moments dm
located at x′ whose vector potential is dA(x) = −dm×∇

(
1/|x−x′|

)
, where we have

used ∇
(
1/|x − x′|

)
= −(x − x′)/|x − x′|3. With the identification dm = gdl′, with g

being the magnetic charge and dl′ a line element, the total vector potential for a string
or solenoid lying on the curve L reads

AL = −g
∫

L
dl′ ×∇

(
1

|x− x′|

)
. (1)
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Line of dipoles Tightly wound

solenoid

Figure 2. Representation of a magnetic monopole g as the end of a line of dipoles or as the end of a tightly
wound solenoid that stretches off to infinity.

Using the result ∇× (dl′/|x−x′|) = −dl′×∇(1/|x−x′|), we can write Equation (1) as

AL = g∇×
∫

L

dl′

|x− x′| . (2)

Notice that this potential is already in the Coulomb gauge: ∇ · AL = 0 because
∇ · [∇× ( )] ≡ 0. In Appendix A, we show that the curl of this potential gives

∇×AL =
g

R2
R̂+ 4πg

∫

L
δ(x − x′) dl′, (3)

where δ(x − x′) is the Dirac delta function, R= |x− x′| and R̂=(x− x′)/R. To have
a clearer meaning of Equation (3), it is convenient to write this equation as

Bmon=∇×AL −Bstring, (4)

where

Bmon =
g

R2
R̂, (5)

is the field of the magnetic monopole g located at the point x′ and

Bstring = 4πg

∫

L
δ(x − x′) dl′, (6)

is a singular magnetic field contribution along the curve L.
By taking the divergence to Bmon it follows

∇ ·Bmon =∇ ·
(

g

R2
R̂

)
= 4πgδ(x−x′), (7)
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where we have used ∇ · (R̂/R2) = 4πδ(x− x′). Similarly, if we take the divergence to
Bstring, we obtain the result

∇ ·Bstring =∇ ·
(
4πg

∫

L
δ(x− x′) dl′

)

=− 4πg

∫

L
∇

′δ(x−x′) · dl′

=− 4πg δ(x−x′), (8)

where we have used ∇δ(x−x′) = −∇′δ(x−x′). When Equations (7) and (8) are used
in the divergence of Equation (3) we verify the expected result ∇ · (∇ × AL) = 0.
Expressed in an equivalent way, the fluxes of the fields Bmon and Bstring mutually
cancel:

∮

S
Bmon · da =

∫

V
∇ ·Bmon d

3x = 4πg, (9)

∮

S
Bstring · da =

∫

V
∇ ·Bstring d

3x = −4πg, (10)

where da and d3x denote the differential elements of surface and volume, and the
Gauss theorem has been used. As a particular application, let us consider the case in
which the string lays along the negative z-axis and the magnetic monopole is at the
origin. In this case dl′ = dz′ẑ, and the corresponding potential is

AL = g∇× ẑ

0∫

−∞

dz′

|x− z′ẑ| . (11)

In Appendix A, we show that the curl of Equation (11) yields

∇×AL =
g

r2
r̂+ 4πgδ(x)δ(y)Θ(−z)ẑ, (12)

where now r = |x|, r̂ = x/r, and Θ(z) is the step function which is undefined at z = 0
but it is defined as Θ(z) = 0 if z < 0 and Θ(z) = 1 if z > 0. The highly singular
character of the magnetic field of the string is clearly noted in the second term on
the right of Equation (12). It is interesting to note that in his original paper [2],
Dirac wrote the following solution for the vector potential in spherical coordinates
AL = (g/r) tan(θ/2)φ̂ and noted that this potential gives the radial field gr̂/r2. He
pointed out: “This solution is valid at all points except along the line θ = π, where
[AL] become infinite.” The solution considered by Dirac is equivalent to

AL = g
1− cos θ

r sin θ
φ̂. (13)

This expression can be obtained by performing the integration specified in Equation
(11), which requires the condition sin θ 6= 0. This is shown in Appendix B.

Clearly, the curl of Equation (13) subjected to sin θ 6= 0 gives only the field of the
magnetic monopole ∇×AL = gr̂/r2 = Bmon. This is so because the singularity origi-
nated by sin θ = 0 is avoided in the differentiation process. As far as the computation
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of the total magnetic field of the configuration formed by a string laying along the
negative z-axis and a magnetic monopole at the origin is concerned, it is simpler to
take the curl to the implicit form of the potential defined by Equation (11) rather than
taking the curl of a regularised form of the potential in Equation (13) [see Appendix
D]. If an electric charge is interacting with the potential given in Equation (2), then

Dirac string

L’

L

S

Monopole

Observation
point

Figure 3. Representation of a magnetic monopole g as the end of a line of dipoles or as the end of a tightly
wound solenoid that stretches off to infinity. The solid angle ΩC is subtended by the curve C = L−L′, which
embeds the area S. The potentials AL and AL′ correspond to the strings L and L′.

it is ultimately interacting with a magnetic monopole and a magnetised string. Dirac
argued that the interaction must only be with the magnetic monopole and therefore
the charge q should never “see” the singular field Bstring defined by Equation (6). For
this reason he postulated that the wave function must vanish along the string. But
this requirement is certainly criticisable because it would mean that the string does
not exist at all. This postulate is known as the “Dirac veto” which in an alternative
form states that any interaction of the electric charge with the string is forbidden.
In Dirac’s own words [30]: “You must have the monopoles and the electric charges
occupying distinct regions of space. The strings, which come out from the monopoles,
can be drawn anywhere subject to the condition that they must not pass through a
region where there is electric charge present.”

The next step of the argument is to show that Equation (4) does not depend on the
location of the string. To show this statement, consider two different strings L′ and
L with their respective vector potentials AL′ and AL. Evidently, the equivalence of
these potentials will imply the equivalence of their respective strings indicating that
the location of the string is irrelevant. The difference of the potentials AL′ and AL

can be obtained from Equation (2) with the integration taken along the closed curve
C = L′−L around the area S as shown in Figure 3. The result can be written as [18]

AL′ −AL = g∇×
∮

C

dl′

|x− x′| = ∇(gΩC), (14)

where ΩC is the solid angle function subtended by the curve C. The integral specified in
Equation (14) is done in Appendix C. The fact that AL′ and AL are connected by the
gradient of a function reminds us of the gauge transformationA′ = A+∇Λ, where Λ is
a gauge function. Without any loss of generality, we can then write A′ ≡ AL′ ,A ≡ AL
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and Λ ≡ gΩC . Notice that AL′ and AL are in the Coulomb gauge: ∇ ·AL′ = 0 and
∇ ·AL = 0. However, this does not prevent these potentials from being connected by
a further gauge transformation whenever the gauge function Λ is restricted to satisfy
∇2Λ = 0. We can verify that this is indeed the case by taking the divergence to
Equation (14) and obtaining ∇2Λ = 0, indicating that the potentials AL′ and AL are
connected by a restricted gauge transformation.

The remarkable point here is that different string positions correspond to different
choices of gauge, or a change in string from L to L′ is equivalent to a gauge trans-
formation from AL to AL′ with the gauge function Λ = gΩC . With the identification
Λ = gΩC , the associated phase transformation of the wave function Ψ′ = eiqΛ/(~c)Ψ
takes the form Ψ′ = eiqgΩC/(~c)Ψ. Now a crucial point of the argument. The solid angle
ΩC undergoes a discontinuous variation of 4π as the observation point (or equivalently
the charge q) crosses the surface S. This makes the gauge function Λ = gΩC multi-
valued which implies that eiqgΩC is also multi-valued, i.e., eiqgΩC 6= eiqg(ΩC+4π). Thus
the transformed wave function of the charge q will be multi-valued when q crosses S,
unless we impose the condition ei4πqg/(~c)=1. But this condition and ei2πn = 1 with n
being an integer, imply 4πqg/(~c)=2πn, and hence, the Dirac quantisation condition
qg = n~c/2 is obtained. Accordingly, the field of the monopole in Equation (4) does
not depend on the location of the string. The price we must pay is the imposition of
the Dirac condition. The lesson to be learned here is that gauge invariance and single-
valuedness of the wave function are the basic pieces to ensemble the Dirac quantisation
condition.

The above derivation of the Dirac condition puts emphasis on the idea that the
location of the string is irrelevant. But the argument might equally put emphasis on
the idea that the string is unobservable. In fact, consider the value Ω1 corresponding
to one side of the surface S and the value Ω2 corresponding to the other side. They are
related by Ω1 = Ω2 +4π. It follows that eiqgΩ1/(~c) = eiqg(Ω2+4π)/(~c). This means that
the wave function of the charge q differs by the quantity ei4πqg/(~c), and this would
make the Dirac string observable as the charge crosses the surface, unless we impose
the condition ei4πqg/(~c) = 1, which is satisfied if qg = n~c/2 holds, i.e, the price we
must pay for the unobservability of the string is the imposition of the Dirac condition.

The standard derivation of the Dirac quantisation condition explained in this section
is appropriate to be presented to graduate students. In Sections 4-9 we will suggest
a presentation of the Dirac condition that encapsules the main ideas underlying this
condition, which may be suitable for advanced undergraduate students.

4. How to construct a suitable quantisation condition

The origin of the letter n appearing in the Dirac quantisation condition qg = n~c/2
can be traced to the trigonometric identity cos (2πn) = 1, where n = 0± 1, ±2, ±3...
This trigonometric identity can be expressed as

ei2πn = 1, (15)

which follows from Euler’s formula eiα = cosα + i sinα with α = 2πn. Consider now
spherical coordinates (r, θ, φ) with their corresponding unit vectors (r̂, θ̂, φ̂). For fixed
r and θ, the azimuthal angles φ and φ + 2π represent the same point. This property
allows us to define a single-valued function of the azimuthal angle F (φ) as one that
satisfies F (φ) = F (φ + 2π). We note that the particular function F (φ) = φ is not a
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single-valued function because F (φ) = φ and F (φ+2π) = φ+2π take different values:
F (φ) 6= F (φ+ 2π). We then say that F = φ is a multi-valued function.

The complex function F (φ) = ei2kφ with k being an arbitrary constant is not gen-
erally a single-valued function because F (φ) = ei2kφ and F (φ + 2π) = ei2k(φ+2π) can
take different values: F (φ) 6= F (φ+2π). This is so because in general ei4πk 6= 1 for ar-
bitrary k. In this case, however, we can impose a condition on the arbitrary constant k
so that F = ei2kφ becomes a single-valued function. By considering Equation (15), we
can see that ei4πk = 1 holds when k is dimensionless and satisfies the “quantisation”
condition:

k =
n

2
, n = 0,±1,±2,±3, .... (16)

Under this condition, F = ei2kφ becomes a single-valued function: F (φ) = F (φ+ 2π).
In short: the single-valuedness of F = ei2kφ requires the quantisation condition spec-
ified in Equation (16). Notice that a specific value of k may be obtained in principle
by considering the basic equations of a specific physical theory. We will see that elec-
trodynamics with magnetic monopoles and quantum mechanics conspire to yield the
specific value of k that leads to the Dirac quantisation condition.

5. Gauge invariance and the Dirac quantisation condition

We will now to present a heuristic quantum-mechanical derivation of the Dirac con-

dition. The Schrödinger equation for a non-relativistic particle of mass m and electric
charge q coupled to a time-independent vector potential A(x) is given by

i~
∂Ψ

∂t
=

1

2m

(
− i~∇− q

c
A

)2

Ψ. (17)

This equation is invariant under the simultaneous application of the gauge transfor-
mation of the potential

A′ = A+∇Λ, (18)

and the local phase transformation of the wave function

Ψ′ = eiqΛ/(~c) Ψ, (19)

where Λ(x) is a time-independent gauge function. Equations (17)-(19) are well known
in textbooks (see note at the end of this review).

At first glance, Equations (17)-(19) do not seem to be related to some quantisation
condition. But a comparison between the previously discussed function ei2kφ with the
phase factor eiqΛ/(~c) appearing in Equation (19),

ei2kφ ←→ eiqΛ/(~c), (20)

suggests the possibility of constructing a specific quantisation condition connected
with Equations (17)-(19). Consider first that k is an arbitrary constant. Therefore
ei2kφ is not generally a single-valued function. We recall that the gauge function Λ
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in the phase eiqΛ/(~c) of the transformation in Equation (19) is an arbitrary function
which may be single-valued or multi-valued. In view of the arbitrariness of k and Λ,
we can make equal both functions: eiqΛ/(~c) = ei2kφ, which implies

Λq = 2k~cφ. (21)

This is the key equation to find a quantisation condition that leads to the electric
charge quantisation. The genesis of this remarkable equation is the gauge invariance
of the interaction between the charge q and the potential A. By direct substitution
we can show that a particular solution of Equation (21) is given by the relations

k =
qg

~c
, (22)

and

Λ = 2gφ, (23)

where the constant g is introduced here to make the constant k dimensionless. The
constant g has the dimension of electric charge and its physical meaning is unknown
at this stage. Notice that Λ in Equation (23) is a multi-valued gauge function. We
require now that the phase eiqΛ/(~c) be single-valued. From eiqΛ/(~c) = ei2kφ it follows
that ei2kφ must be single-valued and then k must satisfy the quantisation condition
displayed in Equation (16). In other words, by demanding the single-valuedness of
eiqΛ/(~c), Equations (16) and (22) yield the quantisation condition

qg =
n

2
~c. (24)

If now the constant g is assumed to be the magnetic charge then Equation (24) is the
Dirac quantisation condition.

Notice that according to the heuristic approach followed here, the derivation of
Equation (24) relies on the existence of the gauge function Λ = 2gφ. In the following
section we will discuss the feasibility of this specific gauge function and argue the
identification of g with the magnetic charge. For now we observe that the heuristic
approach uses the same two fundamental pieces discussed in Section 3, namely, the
single-valuedness of the wave function and gauge invariance. However, the heuristic
approach makes use of these two pieces in a simpler way.

6. The gauge function Λ = 2gφ

It is convenient to assume first the existence of the gauge function Λ = 2gφ with the
purpose of elucidating its associated gauge potentials. The gradient of Λ = 2gφ in
spherical coordinates gives

∇Λ =
2g

r sin θ
φ̂. (25)

Notice that this gradient is singular at r = 0. This is a real singular point which is
not problematic and we agree it is allowed. However, this gradient is also singular at
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those values of the polar coordinate θ satisfying sin θ = 0, which represent lines of
singularities involving non-trivial consequences, which will be discussed in Section 7.
Presumably, there exist two vector potentials such that

A′ −A =
2g

r sin θ
φ̂. (26)

Both potentials A′ and A must originate the same magnetic field B, i.e., ∇ ×A′ =
∇ ×A = B. From Equation (26) we can see that A′ and A may be of the generic
form

A′ = g
1− f(θ)

r sin θ
φ̂, A = −g1 + f(θ)

r sin θ
φ̂, (27)

where f(θ) is an unspecified function such that it does not change the validity of
Equation (26). Notice that A′ and A have singularities originated by sin θ=0. These
will not be considered for now. We observe that A′ and A in Equation (27) are of the

form A′ = [0, 0, A′
φ(r, θ)] = A′

φ(r, θ)φ̂ and A = [0, 0, Aφ(r, θ)] = Aφ(r, θ)φ̂. The curl of

a generic vector of the form F = F [0, 0, Fφ(r, θ)] in spherical coordinates reads

∇× F =
1

r sin θ

∂

∂θ

(
sin θFφ

)
r̂− 1

r

∂

∂r

(
rFφ

)
θ̂. (28)

When this definition is applied to A′ and A and sin θ 6= 0 is assumed we obtain

∇×A′ = ∇×A = − g

r2 sin θ

∂f

∂θ
r̂, (29)

and therefore both potentials yield the same field

B = − g

r2 sin θ

∂f

∂θ
r̂. (30)

In the particular case f(θ) = cos θ, this field becomes

B =
g

r2
r̂. (31)

The nature of the constant g is then revealed in this particular case. Equation (31)
is the magnetic field produced by a magnetic charge g located at the origin. In other
words, the constant g introduced by hand in Equations (22) and (23) is naturally
identified with the magnetic monopole!

The potentials A′ and A in Equation (27) are in the Coulomb gauge. In fact, using
the definition of the divergence of the generic vector F = F [0, 0, Fφ(r, θ)] in spherical
coordinates ∇·F = [1/(r sin θ)]∂F φ/∂φ, it follows that ∇·A′ = 0 and∇·A = 0. Here,
there is a point that requires to be clarified. At first glance, there seems to be some
inconsistency when connecting A′ and A via a gauge transformation because both
potentials are already in a specific gauge, namely, the Coulomb gauge. However, there
is no inconsistence as explained in Section 3, because even for potentials satisfying the
Coulomb gauge there is arbitrariness. Evidently, the restricted gauge transformation
A→ A′ = A+∇Λ, where ∇2Λ = 0, preserves the Coulomb gauge. The definition of
the Laplacian of the generic scalar function f = f(φ) in spherical coordinates reads
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∇2f = [1/(r sin θ)2]∂2f/∂φ2. Using this definition with f = Λ = 2gφ, it follows that
∇2Λ = 0, indicating thatA′ andA are connected by a restricted gauge transformation.

Let us recapitulate. By assuming the existence of the gauge function Λ = 2gφ, we
have inferred the potentials

A′ = g
1− cos θ

r sin θ
φ̂, A = −g1 + cos θ

r sin θ
φ̂. (32)

[these are A′ and A in Equation (27) with f(θ) = cos θ], which originate the same
field given in Equation (31) whenever the condition sin θ 6= 0 is assumed. This field
is the Coloumbian field due to a magnetic monopole g. With the identification of g
as the magnetic monopole, we can say that Equation (24) is the Dirac quantisation
condition. Evidently, we can reverse the argument by introducing first the potentials
A′ and A by means of Equation (32) considering sin θ 6= 0 and then proving they yield
the same magnetic field in Equation (31). The existence of these potentials guarantees
the existence of the gauge function Λ = 2gφ.

Once the existence of the gauge function Λ = 2gφ has been justified with g being
the magnetic monopole, the heuristic derivation of the Dirac quantisation condition
has been completed. However, we should note that this heuristic procedure involves
an aspect that could be interpreted as an inconsistency. According to the traditional
interpretation, the existence of magnetic monopoles implies ∇ · B 6= 0 and therefore
we cannot write B = ∇×A, at least not globally. This is so because ∇ · (∇×A) = 0.
The origin of this apparent inconsistency deals with the singularity originated by the
value sin θ = 0 and its explanation will take us to one of the most interesting concepts
in theoretical physics, the Dirac string, which will be discussed in the following section.

7. Dirac strings

As previously pointed out, both potentials in Equation (32) yield the same magnetic
field given in Equation (31) whenever sin θ 6= 0 is assumed. The question naturally
arises: What does sin θ = 0 mean? The answer is simple: θ = 0 and θ = π. The
first value represents the positive semi-axis z, i.e., z > 0, whereas the second value
represents the negative semi-axis z, i.e., z < 0. Therefore, the condition sin θ 6= 0 means
that the semi-axes z > 0 and z < 0 have been excluded in the heuristic treatment.
Accordingly, when we took the curl to A′ and A, we obtained the magnetic field
B = gr̂/r2 in all space except at r = 0 (which we agree it is allowed) and except
along the negative semi-axis in the case of A′, and also except along the positive semi-
axis in the case of A. Expectably, if we additionally consider the field contributions
associated to the Dirac strings located in the positive and negative semi-axes then we
can reasonably assume the following equations:

∇×A′ =
g

r2
r̂+B′(along z < 0), (33)

∇×A =
g

r2
r̂+B(along z > 0). (34)

Here B′(z < 0) and B(z > 0) represent magnetostatic fields produced by Dirac strings.
The formal determination of these fields is not an easy task because they are highly
singular objects. But, fortunately, heuristic considerations allow us to elucidate the
explicit form of these fields. We note that the semi-axis z < 0 can be represented by the
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singular function −δ(x)δ(y)Θ(−z)ẑ and the semi-axis z > 0 by the singular function
δ(x)δ(y)Θ(z)ẑ. Therefore, the fields B′(z < 0) and B(z > 0) may be appropriately
modelled by the singular functions

B′(z < 0) =−Kδ(x)δ(y)Θ(−z)ẑ, (35)

B(z > 0) = Kδ(x)δ(y)Θ(z)ẑ, (36)

where K is a constant to be determined. Using Equations (33)-(36), we obtain

∇×A′ =
g

r2
r̂−Kδ(x)δ(y)Θ(−z)ẑ, (37)

∇×A =
g

r2
r̂+Kδ(x)δ(y)Θ(z)ẑ. (38)

The divergence of Equation (37) gives

0 = 4πgδ(x) +Kδ(x), (39)

where ∇ · (r̂/r2) = 4πδ(x) with δ(x) = δ(x)δ(y)δ(z) and ∂Θ(−z)/∂z = −δ(z) have
been used. A similar calculation on Equation (38) gives Equation (39) again. From
Equation (39), it follows that K = −4πg and thus we get the final expressions

∇×A′ =
g

r2
r̂+ 4πgδ(x)δ(y)Θ(−z)ẑ, (40)

∇×A =
g

r2
r̂− 4πgδ(x)δ(y)Θ(z)ẑ. (41)

We should emphasise that simple heuristic arguments have been used to infer Equa-
tions (40) and (41). We also note that Equation (40) is the same as Equation (12),
which was in turn derived by the more complicated approach outlined in Section 3.
The advantage of the heuristic argument is that it has nothing to do with the idea
of modelling a magnetic monopole either as the end of an infinite line of infinitesimal
magnetic dipoles or as the end of a tightly wound solenoid that stretches off to infin-
ity. Equation (40) is also formally derived in Appendix A by means of an integration
process. Furthermore, Equation (40) can alternatively be obtained by differentiation,
which is done in Appendix D, where an appropriate regularisation of the potential A′

is required.
Expressed differently, the potentials A′ and A appearing in Equations (40) and (41)

produce respectively the fields B′
ms = ∇×A′ and Bms = ∇×A, and so we can write

B′
ms = Bmon +B′

string, (42)

Bms = Bmon +Bstring, (43)

where the respective magnetic fields are defined as

Bmon =
g

r2
r̂, (44)

B′
string = 4πgδ(x)δ(y)Θ(−z)ẑ, (45)

Bstring =− 4πgδ(x)δ(y)Θ(z)ẑ. (46)
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= +

Magnetic Monopole Monopole and String String

Figure 4. Pictorial representation of the monopole field Bmon defined by Equation (42). We have extracted
the field of the string B′

string from the field B′

ms to insolate the field Bmon of the magnetic monopole.

= +

Magnetic Monopole Monopole and String String

Figure 5. Pictorial representation of the monopole field Bmon defined by Equation (43). We have added the
field of the string Bstring to the field Bms to insolate the field Bmon of the magnetic monopole.

Figures 4 and 5 show a pictorial representation of the fields appearing in Equations (42)
and (43). It is conceptually important to identify the sources of the fields described
by Equations (42) and (43). The magnetic field Bmon in Equation (44) satisfies

∇ ·Bmon = 4πgδ(x), (47)

∇×Bmon = 0, (48)

The magnetic field B′
string in Equation (45) satisfies

∇ ·B′
string =− 4πgδ(x), (49)

∇×B′
string =4πgΘ(−z)

[
δ(x)δ′(y)x̂− δ′(x)δ(y)ŷ

]
, (50)

where δ′(x) = dδ(x)/dx and δ′(y) = dδ(y)/dy are delta function derivatives. The field
Bstring in Equation (46) is shown to satisfy

∇ ·Bstring = −4πgδ(x), (51)

∇×Bstring = −4πgΘ(z)
[
δ(x)δ′(y)x̂− δ′(x)δ(y)ŷ

]
. (52)

Therefore, the field B′
ms defined by Equation (42) satisfies

∇ ·B′
ms = 0, (53)
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∇×B′
ms = 4πgΘ(−z)

[
δ(x)δ′(y)x̂− δ′(x)δ(y)ŷ

]
, (54)

and the field Bms defined by Equation (43) satisfies

∇ ·Bms = 0, (55)

∇×Bms = −4πgΘ(z)
[
δ(x)δ′(y)x̂− δ′(x)δ(y)ŷ

]
. (56)

Let us return to the Schrödinger equation defined by Equation (17). According to
this equation, the electric charge q interacts with the potential A. From the gauge
function Λ = 2gφ, we inferred the potentials A′ and A given in Equation (32). The
curl of each of these potentials originates the field of the magnetic monopole plus the
field of the respective string as may be seen in Equations (40) and (41). If any of these
potentials is considered in Equation (17), then a question naturally arises: Does the
electric charge interact only with the monopole or with the monopole and a Dirac
string? In other words: Can the electric charge physically interact with a Dirac string?
The answer is not as simple as might appear at first sight. The Dirac string is a subtle
object whose physical nature has originated controversy and debate.

Typically, the magnetic field of the Dirac string is discussed together with the
Coulombian field of the magnetic monopole. But since we have identified the sources
of the magnetic field of the string [those given on the right of Equations (49) and (50)
or also on the right of Equations (51) and (52)], we can study the magnetic field of
the Dirac string with no reference to the Coulombian field. In the following section,
we will discuss the interaction of an electric charge with a Dirac string from classical
and quantum-mechanical viewpoints.

8. Classical interaction between the electric charge and the Dirac string

In order to understand the possible meaning of the Dirac string, we should first study
the sources of the magnetostatic field produced by this string. Let us assume that the
string lies along the negative z-axis. From Equations (49) and (50), we can see that
this string has the associated charge and current densities:

ρstring = −gδ(x), (57)

Jstring = cgΘ(−z)
[
δ(x)δ′(y)x̂− δ′(x)δ(y)ŷ

]
, (58)

which generate the magnetic field

B′
string = 4πgδ(x)δ(y)Θ(−z)ẑ. (59)

A regularised vector potential in cylindrical coordinates for the field B′
string reads

Astring =
2gΘ(ρ− ε)Θ(−z)

ρ
φ̂, (60)

where ε > 0 is an infinitesimal quantity. Notice that the potential Astring for ρ > ε
and z < 0 is a pure gauge potential, i.e., it can be expressed as the gradient of a scalar
field. To show that Astring generates B′

string consider the curl of the generic vector
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F = F [0, Fφ(ρ, z), 0] in cylindrical coordinates

∇× F = −∂Fφ

∂z
ρ̂+

1

ρ

∂

∂ρ

(
ρFφ

)
ẑ. (61)

When this definition is applied to the potential Astring defined by Equation (60), we
obtain

∇×Astring =
2gΘ(ρ− ε)δ(z)

ρ
ρ̂+

2gδ(ρ − ε)Θ(−z)
ρ

ẑ. (62)

Since we are only considering z<0 the first term vanishes and then

∇×Astring =
2gδ(ρ − ε)Θ(−z)

ρ
ẑ

= 4πgδ(x)δ(y)Θ(−z)ẑ
= B′

string, (63)

where we have used the formula [58]:

δ(x)δ(y) =
δ(ρ− ε)

2πρ
, (64)

in which the limit ε→ 0 is understood.
Having all the classical ingredients on the table, we will now proceed to interpret

them from both mathematical and physical point of views. These ingredients are highly
singular and therefore such interpretations are full of subtleties. Assuming the existence
of magnetic monopoles, the classical interaction between a moving electric charge q
and the magnetic field B′

string is given by the Lorentz force F = q(v/c) × B′
string.

Expressing the velocity v of the charge in cylindrical coordinates v = (vρ, vφ, vz) and
using the regularised form of B′

string = ∇×Astring defined in the first line of Equation
(63), this force reads

F = −2qgΘ(−z)
c

δ(ρ − ε)

ρ

[
vφρ̂− vρφ̂

]
. (65)

The singular character of this force becomes evident. If ρ 6= ε this force vanishes and
then the charge q is insensitive to the string. If the charge q approaches too much to
the string, then ρ→ ε, which implies ρ→ 0 because ε→ 0. In this case, we have

lim
ρ→0

δ(ρ− ε)

ρ
= 0, (66)

and again the force in Equation (65) vanishes indicating that the charge q is also
unaffected by the string in this extreme case. However, from a mathematical point of
view, when ρ = ε the force in Equation (65) becomes infinite (∞/0 = ∞), which is
physically unacceptable.

Two results are then conclusive. On one hand, if the electric charge q is outside the
string, then q does not feel the action of the magnetic field of the string. This is true
even when the charge q is very close to the string. On the other hand, if ρ = ε, then
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Monopole

Electric charge

Dirac string

Figure 6. Geometry of the Dirac string and its associated vector potential Astring . This potential satisfies
∇×Astring = B′

string.

the charge q feels an infinite force due to the magnetic field of the string. The idea of
an infinite force leads us to conclude that the Dirac string lacks any physical meaning.
Thus the common statement that the Dirac string cannot be detected is meaningful
in purely classical considerations.

The interpretation of the potential in Equation (60) is also somewhat subtle. There

is no problem when ρ > ε because in this case Astring = 2gΘ(−z)φ̂/ρ exhibits a
regular behaviour which is drawn in Figure 6. There is also no problem when ρ < ε
because in this case Astring = 0. When ρ→ ε, it follows ρ→ 0 because ε→ 0. In this
case

lim
ρ→0

Θ(ρ− ε)

ρ
= 0, (67)

and again Astring vanishes. The problematic issue arises when ρ = ε because in this
case Astring becomes undefined.

9. Quantum-mechanical interaction between the electric charge and the
Dirac string

The second quantum-mechanical derivation of the Dirac condition will now be re-
viewed. We have argued that the classical interaction of an electric charge with the
Dirac string is not physically admissible. Now we will consider the possibility of a
quantum-mechanical interaction between the electric charge and the string. Dirac [2]
noted that the interaction of an electric charge with a vector potential is given by the
phase in the wave function

Ψ = ei[q/(~c)]
∫

x

0
A(x′)· dl′Ψ0, (68)

where Ψ0 is the solution of the free Schrödinger equation and the line integral is taken
a long a path of the electric charge from the origin to the point x. The quantum
mechanical analogous to the classical Lorentz force F = q(v/c) × B is given by the
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phase ei[q/(~c)]
∫

x

0
A(x′)·dl′ appearing in Equation (68), which in turn represents the

solution of the Schrödinger equation given in Equation (17). This solution assumes
that B = ∇×A = 0 holds in the considered region, otherwise the line integral depends
on the path. We note that the phase of the wave function can be discontinuous at some
point but the wave function must be a continuous function.

Consider the particular case in which A = Astring, i.e., when the charge q interacts
with the potential Astring associated to the string L′. With this identification and
using cylindrical coordinates, the Dirac condition can be implied by assuming (i) that
the path is a closed line surrounding the string

Ψ = ei[q/(~c)]
∮
C
Astring ·ρ dφ φ̂ Ψ0, (69)

and (ii) that the phase change [q/(~c)]
∮
C Astring ·ρ dφ φ̂ within Equation (69) satisfies

the condition

q

~c

∮

C
Astring · ρ dφ φ̂ = 2πn. (70)

Under these specific conditions, the possible quantum-mechanical effect of the string on

the electric charge will disappear because ei[q/(~c)]
∮
C
Astring·ρ dφ φ̂ = ei2πn = 1. Integration

of the left-hand side of Equation (70) with the potential defined by Equation (60) gives

q

~c

∮

C
Astring · ρ dφ φ̂ =

2qg

~c
Θ(ρ− ε)Θ(−z)

2π∫

0

dφ

=
4πqg

~c
Θ(ρ− ε)Θ(−z)

=
4πqg

~c
, (71)

for ρ > ε and z < 0. From Equations (70) and (71), we directly obtain the Dirac
quantisation condition qg = n~c/2. We then conclude that from quantum-mechanical
considerations the unobservability of the string (classically well argued) implies the
Dirac condition. The argument can be reversed. If we start by imposing the Dirac
condition then the Dirac string turns out to be undetectable. The previous treatment to
the Dirac string may be seen as a complementary discussion to the heuristic approach
to the Dirac condition. In the following section, we will review some of the well-known
derivations of the Dirac quantisation condition.

10. Aharonov–Bohm effect and the Dirac quantisation condition

We will now review the third quantum-mechanical derivation of the Dirac condition.
According to the Aharonov–Bohm (AB) effect [40], particles can be affected by a vector
potential even in regions where the magnetic field vanishes. We observe that this effect
and the derivation of the Dirac quantisation condition require similar objects: a long
solenoid for the AB effect and a semi-infinite string for the Dirac condition. Therefore,
we may think of the Dirac string as the AB solenoid and investigate as to whether
the undetectability of the Dirac string can be demonstrated via a hypothetical AB
interference experiment [4,8–12,14,15,17,22,23,41,42].
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Let us imagine a double-slit AB experiment with a Dirac string inserted between
the slits as shown in Figure 7. Electric charges are emitted by a source at point A, pass
through two slits 1 and 2 of the screen located at point B, and finally are detected at
point C. The wave function in a region of zero vector potential is simply Ψ = Ψ1+Ψ2

where Ψ1 and Ψ2 are the wave functions of the charges passing through the slits 1
and 2. Without the presence of the string, the wave function of the charges combines
coherently in such a way that the probability density at C reads P = |Ψ1 +Ψ2|2.

Path 1

Path 2

A B Dirac string C

Figure 7. The AB double slit experiment with the Dirac string inserted between the slits. If we demand
the string to be undetectable by the wave function it follows that the Dirac quantisation condition holds.
Conversely, if the Dirac condition holds then the string is undetectable.

Since the Dirac string is inserted between the two slits, it is clear that each of the
wave functions Ψ1 and Ψ2 pick up a phase due to the string potential Astring ≡ As.
Thus the wave function of the charges is now given by

Ψ =e(iq/~c)
∫
1
As·ρ dφ φ̂Ψ1 + e(iq/~c)

∫
2
As·ρ dφ φ̂Ψ2

=

(
Ψ1 + e(iq/~c)

∮
C
As·ρ dφ φ̂Ψ2

)
e(iq/~c)

∫
1
As·ρ dφ φ̂

=

(
Ψ1 + ei4πqg/(~c) Ψ2

)
e(iq/~c)

∫
1
As·ρ dφ φ̂, (72)

where we have used the expression for Astring given in Equation (60) and written as

∮

C
As · ρ dφ φ̂ =

∫

2

As · ρ dφ φ̂−
∫

1

As · ρ dφ φ̂. (73)

It follows now that the probability density at C reads

P = |Ψ1 + ei4πqg/(~c) Ψ2|2. (74)

The effect of the Dirac string would be unobservable if ei4πqg/(~c) = 1 and this implies
the Dirac quantisation condition qg = n~c/2. Under this condition, the probability
density becomes P = |Ψ1 + Ψ2|2, meaning that no change in the interference pattern
would be observed due to the Dirac string. In short: the Dirac string is undetectable
if the Dirac quantisation condition holds. We can reverse the argument: if the Dirac
quantisation condition holds, then the Dirac string is unobservable.
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11. Feynman’s path integral approach and the Dirac quantisation
condition

We will now discuss the fourth quantum-mechanical derivation of the Dirac condition.
The path-integral approach to quantum mechanics, suggested by Dirac in 1933 [43],
formally started by Feynman in his 1942 Ph.D. thesis [44] and fully discussed by him
in 1948 [45], provides an elegant procedure to obtain the Dirac condition, which is
similar to a certain extent to that of the Aharonov–Bohm effect.

Let us first briefly discuss the essence of the path-integral approach. Question [59]:
If a particle is at an initial position A, what is the probability that it will be at another
position B at the latter time? Schrödinger’s wave function tells us the probability for a
particle to be in a certain point in time, but it does not tell us the transition probabil-
ity for a particle to be between two points at different times. We need to introduce a
quantity that generalises the concept of wave function to include transition probabili-
ties. According to Feynman, this concept is the “transition probability amplitude” (or
amplitude for short) which relates the state of a wave function from the initial position
and time |Ψ(xi, ti)〉 to its final position and time |Ψ(xf, tf)〉, and is given by the inner
product K = 〈Ψ(xf, tf)|Ψ(xi, ti)〉 , where we have used Dirac’s “bra-ket” notation. It
follows that the transition probability (or probability for short) is defined as P = |K|2.
Dirac [43] suggested that the amplitude for a given path is proportional to the expo-
nent of the classical action associated to the path e(i/~)S(x), where S(x) =

∫
L(x, ẋ)dt,

is the classical action, with L being the Lagrangian. But a particle can take any pos-
sible path from the initial to the final point (there is no reason for the particle to take
the shortest path). Therefore, to compute the amplitude, Feynman proposed to sum
over all the infinite paths that the particle can take. More specifically, the transition
probability amplitude K for a charged particle to propagate from an initial point A
to a final point B is given by the integral over all possible paths

K =

∫
D(x) e(i/~)S(x), (75)

where
∫
D(x) is a short hand to indicate a product of integrals performed over all

paths x(t) leading from A to B, and S is the classical action associated to each path.
For example, consider two generic paths γ1 and γ2 each of which starts at A and ends
at B. The amplitude is

K = K1 +K2 =

∫

γ1

D(x) e(i/~)S(1)(x) +

∫

γ2

D(x) e(i/~)S(2)(x), (76)

where K1 is the amplitude associated to the integration over all paths through γ1
and K2 is the amplitude associated to the integration over all paths through γ2.
Consider first the action for a free particle S0 =

∫
mẋ2/2 dt. In this case, there is not

external interaction and therefore the probability is simply P = |K1 +K2|2. Nothing
really interesting happens there. Consider now the case where the electric charge is
affected by the potential due to the magnetic monopole and the Dirac string given in
Equation (2). Furthermore, suppose that the paths γ1 and γ2 pass on each side of the
Dirac string and form the boundary of a surface S as seen in Figure 8.
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A

B

S

Dirac string

Monopole

Figure 8. A Dirac string is encircled between two generic paths γ1 and γ2 starting at A, ending at B, and
forming the boundary of the surface S.

The external vector potential AL will affect the motion of the particle because the
action acquires an interaction term

S = S0 +
q

c

∫
AL · dl. (77)

Thus the amplitude becomes

K =

∫

γ1

D(x) e(i/~)(S
(1)
0 +(q/c)

∫
(1)

AL·dl) +

∫

γ2

D(x) e(i/~)(S
(2)
0 +(q/c)

∫
(2)

AL·dl)

=

(
K1 + e(iq/~c)

∮
C
AL·dlK2

)
e(iq/~c)

∫
(1)

AL·dl, (78)

where we have written

∮

C
AL · dl =

∫

(2)
AL · dl−

∫

(1)
AL · dl. (79)

Clearly, the contributions from γ1 and γ2 interfere, giving the interference term
e(iq/~c)

∮
C
AL·dl. Using Stoke’s theorem and Equation (4) we can write the integral

of this exponent as

∮

C
AL · dl =

∫

S
∇×AL · da =

∫

S
Bmon · da+

∫

S
Bstring · da. (80)

Therefore, we may write the interference term as

e(iq/~c)
∮
C
AL·dl = e(iq/~c)

∫
S
Bmon·da e(iq/~c)

∫
S
Bstring·da. (81)

The term e(iq/~c)
∫
S
Bmon·da is perfectly fine because the charged particle should be

influenced by the magnetic monopole. However, the second term must not con-
tribute or otherwise the string would be observable. Therefore, we must demand
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e(iq/~c)
∫
S
Bstring·da = 1. But the flux through the string is

∫
S Bstring · da = 4πg so

that ei4πqg/~c = 1, which implies the Dirac quantisation condition qg = n~c/2.
As may be seen, the procedure to obtain the Dirac quantisation condition based on

Feynman’s path integral approach is similar to the procedure based on the Aharonov–
Bohm effect. If one first teaches the latter procedure in an advanced undergraduate
course, then one may teach the former procedure in a graduate course, following Feyn-
man’s opinion that [45]: “there is a pleasure in recognising old things from a new point
of view.”

12. The Wu–Yang approach and the Dirac quantisation condition

We will now examine the fifth quantum-mechanical derivation of the Dirac condition.
Let us rewrite Equations (40) and (41) as follows:

B′= ∇×A′ =
g

r2
r̂+ 4πgδ(x)δ(y)Θ(−z)ẑ, (82)

B = ∇×A =
g

r2
r̂− 4πgδ(x)δ(y)Θ(z)ẑ. (83)

A direct look at these equations reveals an unpleasant but formal result: B′ 6= B.
This result follows from the difference of the delta-field contributions of the respective
strings. Therefore, the potentials A′ and A are not equivalent. Strictly speaking they
are not gauge potentials. However, it is possible to extend the gauge symmetry to
include contributions due to strings [8], but this possibility will not be discussed here.
Using the property Θ(−z) = 1 − Θ(z), the difference of the magnetic fields is given
by B′ − B = 4πgδ(x)δ(y)ẑ, where the right-hand side of this equation is a singular
magnetic field attributable to an infinite string lying along the entire z-axis. The
fact that B′ and B are different is not an unexpected result because the current
densities producing them are different as may be seen in Equations (50) and (52).
However, we have argued that the Dirac strings are unphysical and should therefore
be unobservable. The question then arises: How should the potentials A′ and A be
interpreted? A rough answer will be thatA′ andA are equivalent because they produce
the same magnetic field [the first terms of Equations (82) and (83)] and because the
field contributions of the strings [the last terms of Equations (82) and (83)] can be
physically ignored. But we must recognise that this answer is not very satisfactory from
a formal point of view. In other words,A′ andA are physically but not mathematically
equivalent.

Furthermore, it can be argued that the derivation of the Dirac condition involves
some unpleasant features like singular gauge transformations and singular potentials
[9]. Fortunately, a procedure due to Wu and Yang [46] avoids these unpleasant fea-
tures and leads also to the Dirac condition. The Wu–Yang method does not to deal
with singular potentials nor with singular gauge transformations (except with the real
singularity at the origin). The strategy of Wu and Yang was to use different vector
potentials in different regions of space. In more colloquial words, if the Dirac string
is the cause of the difficulties and subtleties, then the Wu-Yang approach provides a
simple solution: to get rid of the Dirac string via a formal procedure.

In the Wu–Yang method the potentials A′ and A displayed in Equation (32) are
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non-singular if we define them in an appropriate domain:

A′ = g
1− cos θ

r sin θ
φ̂, RN : 0 ≤ θ <

π

2
+

ε

2
(84)

A =− g
1 + cos θ

r sin θ
φ̂, RS :

π

2
− ε

2
< θ ≤ π (85)

where ε > 0 is an infinitesimal quantity. The potentials A′ and A are in the Coulomb
gauge: ∇·A = 0 and∇·A′ = 0. Furthermore, these potentials are non-global functions
since they are defined only on their respective domains: RN and RS. The region RN ,
where A′ is defined, excludes the string along the negative semi-axis (θ = π) and
represents a North hemisphere. The region RS , where A is defined, excludes the string
along the positive semi-axis (θ = 0) and represents a South hemisphere. The union of
the hemispheres RN ∪RS covers the whole space (except on the origin, where there is
a magnetic monopole). In the intersection RN ∩RS (the “equator”) both hemispheres
are slightly overlapped. A representation of the Wu-Yang configuration is shown in
Figure 9.

Intersection

North hemisphere

South hemisphere

Figure 9. The Wu-Yang configuration describing a magnetic monopole without the Dirac strings.

Using Equation (28), the potentials A′ and A defined by Equations (84) and (85)
yield the field of a magnetic monopole: B = ∇×A′ = ∇×A = gr̂/r2. Therefore, the
potentials A′ and A must be connected by a gauge transformation in the overlapped
region π/2−ε/2 < θ < π/2+ε/2, where both potentials are well defined. At first glance,

A′ −A = 2gφ̂/(r sin θ). But in the overlapped region, we have lim sin(π/2± ε/2) = 1
as ε→ 0 and thus

A′ −A =
2g

r
φ̂ = ∇(2gφ) = ∇Λ, (86)

where Λ = 2gφ (the gauge function Λ satisfies ∇2Λ = 0 indicating that A′ and A are
related by a restricted gauge transformation). Suppose now that an electric charge is
in the vicinity of the magnetic monopole. In this case, we require two wave functions
to describe the electric charge: Ψ′ for RN and Ψ for RS. In the overlapped region, the
wave functions Ψ′ and Ψ must be related by the phase transformation Ψ′ = eiqΛ/(~c) Ψ,
which is associated to the gauge transformation given in Equation (86). This phase
transformation with Λ = 2gφ reads

Ψ′ = ei2qgφ/(~c) Ψ. (87)
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But the wave functions Ψ′ and Ψ must be single-valued
(
Ψ′|φ = Ψ′|φ+2π

)
, which

requires ei4πqg/(~c)=1, and this implies the Dirac quantisation condition qg = n~c/2.
Remarkably, Equations (84)-(87) do not involve unpleasant singularities. The approach
suggested by Wu and Yang constitutes a refinement of Dirac’s original approach. It is
pertinent to say that the Wu–Yang approach has become popular in many treatments
of the Dirac quantisation condition [4,8,9,11–13,16,24].

13. Semi-classical derivations of the Dirac quantisation condition

We will now discuss the first semi-classical derivation of the Dirac condition. In 1936,
Saha wrote [33]: “If we take a point charge e at A and a magnetic pole µ at B,
classical electrodynamics tells us that the angular momentum of the system about the
line AB is just eµ/c. Hence, following the quantum logic, if we put this = h/(2π),
the fundamental unit of angular momentum, we have µ = ch/(4πe) which is just the
result obtained by Dirac.” This relatively simple semi-classical argument to arrive at
the Dirac condition [with n = 1] remained almost ignored until 1949 when Wilson
[36,37] used the same argument to obtain this condition [now with n integer]. Let
us develop in more detail the derivation of Dirac’s condition suggested by Saha and
also by Wilson. When the Dirac condition is written as qg/c = n~/2, we can see that
the left-hand side has units of angular momentum because the constant ~ has these
units. This suggests the possibility that the quantity qg/c can be obtained from the
electromagnetic angular momentum:

LEM =
1

4πc

∫

V
x× (E ×B) d3x, (88)

with the idea that the field E is produced by the electric charge q and the field B by
the magnetic charge g, both charges at rest and separated by a finite distance. This
configuration was considered by Thomson [34,35] in 1904, and is now known as the
“Thomson dipole.” More precisely stated, the Thomson dipole is a static dipole formed
by an electric charge q and a magnetic charge g separated by the distance a= |a|, where
the vector a is directed from the charge q to the charge g. For convenience, we place
the charge q at x′ = −a/2 and the charge g at x′=a/2 as seen in Figure 10. Clearly,
there is no mechanical momentum associated to this dipole because it is at rest. In
Appendix E, we show that the electromagnetic angular momentum due to the fields
of the charges q and g is given by

LEM =
qg

c
â, (89)

where â = a/a. This equation was derived by Thomson [34,35]. Remarkably, the
magnitude of LEM does not depend on the distance between the charges. We note that
Equation (89) has been derived by several equivalent procedures [60,61]. Notice also
that this angular momentum is conserved: dLEM/dt = 0. We now invoke a quantum
mechanical argument: quantisation of the angular momentum. As is well known in
quantum mechanics, the total (conserved) angular momentum operator Ĵ of a system

reads [21]: Ĵ = L̂ + Ŝ, where L̂ is the orbital angular momentum operator and Ŝ

is the spin angular momentum operator. In order to obtain Ĵ for a given system, we
first identify its corresponding classical counterpart. Evidently, the Thomson dipole
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Figure 10. Configuration of the Thomson dipole.

lacks of an orbital angular momentum. We can therefore identify Ŝ with Ĵ and make
the substitution LEM → Ĵ . If we measure Ĵ along any of its three spatial components,
say z, it takes the discrete values Jz = n~/2 [21]. Therefore, if we choose â = ẑ in
Equation (89) then we can quantise the z component of this equation. Following this
argument we obtain Jz = qg/c = n~/2, which yields the Dirac condition qg = n~c/2.
We should emphasise that this method is semiclassical in the sense that the angular
momentum qg/c is first obtained from purely classical considerations and then it is
made equal to n~/2 by invoking a quantum argument.

We will now examine the second semi-classical derivation of the Dirac condition.
We can also arrive at the Dirac condition by another semiclassical method due to Fierz
[38]. Consider an electric charge q moving with velocity ẋ in the field of a monopole
g centred at the origin: B = gr̂/r2. This configuration is illustrated in Figure 11. The
charge q experiences the Lorentz force

dp

dt
= q

(
ẋ

c
×B

)
, (90)

where p = mẋ is the mechanical momentum associated to the charge q. The field
of the monopole is spherically symmetric and therefore one should expect the total
angular momentum of the system is conserved. To see this, we take the cross product
of Equation (90) with the position vector x, use x×(dp/dt) = d(x×p)/dt, and obtain
the corresponding torque

d(x× p)

dt
=

q

c

(
x× (ẋ×B)

)
=

qg

c

(
x× (ẋ× x)

r3

)
=

d

dt

(
qg

c
r̂

)
, (91)

where we have used the identity

x× (ẋ× x)

r3
=

dr̂

dt
. (92)

Clearly, the mechanical angular momentum x × p is not conserved d(x × p)/dt 6= 0.
This is an expected result because there is an extra contribution attributed to the
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Charge

Monopole

Angular
momentumJ

Figure 11. Dynamics of a moving electric charge in the field of a magnetic monopole. In this configuration
the angular momentum r̂ · J = −qg/c is constant. This means that the charge moves in a cone on the axis J,
with the angle θ = cos−1(qg/Jc).

angular momentum of the electromagnetic field. From Equation (91), it follows

d

dt

(
x× p− qg

c
r̂

)
= 0. (93)

Hence, the total (conserved) angular momentum is

J = x× p− qg

c
r̂. (94)

This interesting result was observed by Poincaré [62] in 1896, although it was already
anticipated by Darboux in 1878 [63]. From Equation (94), it follows that the radial
component of this angular momentum is constant J · r̂ = −qg/c. With regard to the
quantity qg/c, Fierz [38] pointed out: “...the classic value qg/c, must be in quantum
theory equal to an integer or half-integer multiple of ~.” Following this argument,
we can quantise the radial component of the angular momentum in Equation (94):
Jr = qg/c = n~/2 (the minus sign is absorbed by n) and this yields the Dirac condition
qg = n~c/2.

We will now review the third semi-classical derivation of the Dirac condition. Strictly
speaking, we will review the derivation of a generalised duality-invariant form of this
condition due to Schwinger [39]. The approach followed by Schwinger is similar to that
of Fierz but now applied to the case of dyons, which are particles with both electric
and magnetic charge. The approach considers the interaction of a dyon of mass m
carrying an electric charge q1 and a magnetic charge g1, moving with velocity ẋ in the
field of a stationary dyon with electric charge q2 and magnetic charge g2 centred at
the origin, as seen in Figure 12. The Lorentz force due to the moving dyon takes the
duality-invariant form

dp

dt
= q1

(
E+

ẋ

c
×B

)
+ g1

(
B− ẋ

c
×E

)
, (95)

where the electric and magnetic fields produced by the charges q2 and g2 of the
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Figure 12. Dynamics of a moving dyon in the field of a stationary dyon. In this configuration the angular
momentum r̂ ·J = −(q1g2 − q2g1)/c is constant. This means that the dyon moves in a cone on the axis J, with
the angle θ = cos−1((q1g2 − q2g1)/Jc).

stationary dyon are

E =
q2
r2

r̂, B =
g2
r2

r̂. (96)

Therefore, we may write Equation (95) as

dp

dt
=

(
q1q2 + g1g2

) r̂

r2
+
(
q1g2 − q2g1

) ẋ× x

c r3
. (97)

To find the conserved angular momentum of the system, we take the cross product of
Equation (97) with the position vector x, use x× (dp/dt) = d(x× p)/dt, and obtain

d(x× p)

dt
=

(
q1g2 − q2g1

)

c

dr̂

dt
, (98)

where we have used Equation (92). The conserved angular momentum is thus

J = x× p−
(
q1g2 − q2g1

) r̂
c
, (99)

whose radial component J · r̂ = −(q1g2 − q2g1)/c can be quantised: Jr = (q1g2 −
q2g1)/c = n~/2, yielding the Schwinger–Swanziger quantisation condition

q1g2 − q2g1 =
n

2
~c. (100)

In contrast to the Dirac condition qg = n~c/2, which for a fixed value of n is not
invariant under the dual changes q → g and g → −q, the Schwinger–Swanziger con-
dition is clearly invariant under these dual changes. Equation (100) was first obtained
by Schwinger [64] and independently by Swanziger [65]. Interestingly, both of these
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authors argued that the quantisation in Equation (100) should take integer and not
half-integer values, i.e. Equation (100) should be written as q1g2 − q2g1 = n~c.

14. Final remarks on the Dirac quantisation condition

The advent of the Dirac quantisation condition brought us two news: one good and
another bad. The good news is that this condition allows us to explain the observed
quantisation of the electric charge. The bad news is that such an explanation is based
on the existence of unobserved magnetic monopoles. One is left with the feeling that
the undetectability of magnetic monopoles spoils the Dirac quantisation condition.
Evidently, the fact that the Dirac condition explains the electric charge quantisation
cannot be considered as a proof of the existence of magnetic monopoles. Although
it has recently been argued that magnetic monopoles may exist, not as elementary
particles, but as emergent particles (quasiparticles) in exotic condensed matter mag-
netic systems such as “spin ice” [66–68], there is still no direct experimental evidence
of Dirac monopoles. However, experimental searches for monopoles continue to be
of great interest [69–73,76]. It can be argued that the idea of undetected magnetic
monopoles is too high a price to pay for explaining the observed charge quantisa-
tion. But equally it can be argued that magnetic monopoles constitute an attractive
theoretical concept, which is not precluded by any fundamental theory and has been
extremely useful in modern gauge field theories [4,29].

In any case, magnetic monopoles are like the Loch Ness monster, much talked
about but never seen. Although many theoretical physicists would say that the idea
of magnetic monopoles is too attractive to set aside, we think it would be desirable to
have a convincing explanation for the electric charge quantisation without appealing
to magnetic monopoles.

It is interesting to note that the introduction of magnetic monopoles in Dirac’s
1931 paper [2] was not taken fondly by Dirac himself. He wrote: “The theory leads to
a connection, namely, [eg0 = ~c/2], between the quantum of magnetic pole and the
electronic charge. It is rather disappointing to find this reciprocity between electricity
and magnetism, instead of a purely electronic quantum condition such as [~c/e2].”
However, no satisfactory explanation for the charge quantisation was proposed be-
tween 1931 and 1948 and this seemed to led him to reinforce his idea about magnetic
monopoles. In his 1948 paper he wrote [3]: “The quantisation of electricity is one of
the most fundamental and striking features of atomic physics, and there seems to be
no explanation for it apart from the theory of poles. This provides some grounds for
believing in the existence of these poles.”

The story of the Dirac quantisation condition may be traced to the story of a man [P.
A. M. Dirac: the theorist of theorists!] who wanted to know why the electric charge is
quantised and why the electric charge of the electron had just the numerical value that
makes the inverse of the fine structure constant to acquire the value α−1 = ~c/e2 ≈
137. Many years later, he expressed his frustration at not being able to find this magic
number. He criticised his theory because it [30]: “...did not lead to any value for this
number [α−1 ≈ 137], and, for that reason, my argument seemed to be a failure and I
was disappointed with it.” But the idea of explaining this number seems to have been
always important for him. With the confidence of a master, Dirac wrote [30]: “The
problem of explaining this number ~c/e2 is still completely unsolved. Nearly 50 years
have passed since then. I think it is perhaps the most fundamental unsolved problem
of physics at the present time, and I doubt very much whether any really big progress
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will be made in understanding the fundamentals of physics until it is solved.”
Although Dirac was not successful in explaining why the charge of the electron has

its observed value, in the search for this ambitious goal, he envisioned a magnetic
monopole attached to a semi-infinite string, which he required to be unobservable
by a quantum argument, obtaining thus a condition that explains the electric charge
quantisation. This is indeed a brilliant idea not attributable to an ordinary genius but
rather to a magician, a person “whose inventions are so astounding, so counter to all
the intuitions of their colleagues, that it is hard to see how any human could have
imagined them” [74].

15. A final comment on nodal lines

Berry [77] has pointed out that the nodal lines introduced by Dirac in his 1931 paper
[2] are an example of dislocations in the probability waves of quantum mechanics. The
history can be traced to 1974 when Nye and Berry [78] observed that wavefronts can
contain dislocation lines, closely analogous to those found in crystals. They defined
these dislocation lines as those lines on which the phase of the complex wave function
is undetermined, which requires the amplitude be zero, indicating that dislocation
lines are lines of singularity (or lines of zeros). Remarkably, the lines of singularity
(also called wave dislocations, nodal lines, phase singularities and wave vortices) are
generic features of waves of all kinds, such as light waves, sound waves and quantum
mechanical waves. These lines involve two essential properties: on these lines the phase
is singular (undetermined) and around these lines the phase changes by a multiple
(typically ±1) of 2π. Even though the concept of the line of singularity has been
extensively discussed in the literature (see, for example, the collection of papers in the
special issues mentioned in References [79–82]), its connection with the Dirac strings
is not usually commented on. In his review on singularities in waves [77], Berry has
claimed: “He [Dirac] recognises that Ψ0 [appearing in Equation (68)] can have nodal
lines around which the phase χ0 in the absence of magnetic field changes by 2nπ, i.e. he
recognises the existence of wavefront dislocations.” However, it should be emphasised
that the semi-infinite nodal lines introduced by Dirac are unobservable because of
the Dirac quantisation condition. But in the general case, the lines of singularity are
physical and can form closed loops, which can be linked and knotted [83].

16. Conclusion

In this review paper, we have discussed five quantum-mechanical derivations, three
semiclassical derivations and a novel heuristic derivation of the Dirac quantisation
condition. They are briefly resumed as follows.

First quantum mechanical derivation. In this derivation, the magnetic monopole
is attached to an infinite line of dipoles, the so-called Dirac string [18]. The vector
potential of this configuration yields the field of the magnetic monopole plus a singular
magnetic field due to the Dirac string. By assuming that the location of the string must
be irrelevant, it is shown that the two arbitrary positions of the string are connected
with two gauge potentials, meaning that the change of a string to another string
is equivalent to a gauge transformation involving a multi-valued gauge function. By
demanding the wave function in the phase transformation be single-valued, the Dirac
condition is required.
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Heuristic derivation. (i) It starts with the relation ei2kφ = eiqΛ/(~c), where k is an
arbitrary constant, φ the azimuthal angle and Λ an unspecified gauge function; (ii)
from this relation it follows the remarkable equation Λq/(~c) = 2kφ. One solution
of this equation is given by k = qg/(~c) and Λ = 2gφ, where g is a constant to be
identified; (iii) if the phase eiqΛ/(~c) is required to be single-valued, then ei2kφ must be
also single-valued and this implies the “quantisation” condition k = n/2 with n being
an integer; (iv) from this condition and k = qg/(~c), we get the relation qg = n~c/2;
(v) the function Λ = 2gφ with g being the magnetic charge is proved to be a gauge
function and this allows us to finally identify qg = n~c/2 with the Dirac quantisation
condition; (vi) a weak point of this heuristic derivation is that the associated Dirac
strings are excluded; (vii) classical considerations indicate that the Dirac string lacks of
physical meaning and is thus unobservable; (viii) Quantum mechanical considerations
show that the undetectability of the Dirac string implies the Dirac condition.

Second quantum mechanical derivation. The quantum-mechanical interaction of an
electric charge q with the potential A is given by the phase appearing in the wave
function Ψ = ei[q/(~c)]

∫
x

0
A(x′)·dl′Ψ0, where Ψ0 is the solution of the free Schrödinger

equation and the line integral in the phase is taken a long a path followed by q from
the origin to the point x. If A = Astring = 2gΘ(ρ − ε)Θ(−z)φ̂/ρ and the path is a

closed line surrounding the string, we have [q/(~c)]
∮
C Astring · ρ dφ φ̂ = 4πqg/(~c) for

ρ > ε and z < 0. If now we demand this quantity to be equal to 2πn, then the effect of
the string on the charge q disappears because ei4πqg/(~c) = ei2πn = 1 and this implies
the Dirac condition.

Third quantum mechanical derivation. This derivation is directly related to the
Aharonov–Bohm double-slit experiment [40] with the Dirac string inserted between the
slits. Considering the vector potential of the string, it is shown that the corresponding
probability density is P = |Ψ1 + ei4πqg/(~c) Ψ2|2. The effect of the Dirac string is
unobservable if ei4πqg/(~c) = 1 and this implies the Dirac condition. Vice versa, if this
condition holds a priori then the Dirac string is unobservable.

Fourth quantum mechanical derivation. According to Feynman’s path-integral
approach to quantum mechanics [45], the amplitude of a particle reads K =∫
D(x) e(i/~)S(x), where

∫
D(x) indicates a product of integrals performed over all

paths x(t) going from A to B, and S is the classical action associated to each path.
For two such generic paths in free space, γ1 and γ2, we have K = K1 + K2 =∫
γ1
D(x) e(i/~)S(1)(x)+

∫
γ2
D(x) e(i/~)S(2)(x). Suppose that γ1 and γ2 pass on each side of the

Dirac string and form the boundary of a surface S. As a result, the action acquires an
interaction term S=S0+(q/c)

∫
AL ·dl, where S0 is the action for the free path. Thus

the amplitude becomes K=
(
K1+e(iq/~c)

∮
C
AL·dlK2

)
e(iq/~c)

∫
(1)

AL·dl, and the interfer-

ence term is e(iq/~c)
∮
C
AL·dl. Using the Stoke’s theorem and ∇×AL=Bmon +Bstring,

the interference term becomes e(iq/~c)
∮
C
AL·dl = e(iq/~c)

∫
s
Bmon·da e(iq/~c)

∫
S
Bstring·da. The

second exponential factor on the right should not contribute or otherwise the string
would be observable. Thus we must demand e(iq/~c)

∫
S
Bstring·da = 1. But the flux through

the string is
∫
SBstring ·da = 4πg so that ei4πqg/~c = 1, which implies Dirac’s condition.

Fifth quantum mechanical derivation. This derivation describes a magnetic
monopole without Dirac strings [46] using two non-singular potentials which are de-
fined in two different regions of space. In the intersection region, both potentials are
connected by a non-singular gauge transformation with the gauge function Λ = 2gφ.
The description of an electric charge in the vicinity of the magnetic monopole re-
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quires two wave functions Ψ′ and Ψ, which are related by the phase transforma-
tion Ψ′ = ei2qgφ/(~c)Ψ in the overlapped region. But Ψ′ and Ψ must be single-valued(
Ψ′|φ=Ψ′|φ+2π

)
, which requires ei4πqg/(~c)=1, and this implies Dirac’s condition.

First semi-classical derivation. This derivation considers the Thomson dipole [34,
35], which is a static dipole formed by an electric charge q and a magnetic charge g
separated by the distance a= |a| [60,61]. The electromagnetic angular momentum of
this dipole is given by LEM = qgâ/c. By assuming that any of the spatial components of
the angular momentum must be quantised in inter multiples of ~/2, we obtain Dirac’s
condition.

Second semi-classical derivation. This derivation considers an electric charge q mov-
ing with speed ẋ in the field of a monopole g [8,38]. The associated Lorentz force
dp/dt = q

(
ẋ × B/c

)
is used to obtain total (conserved) angular momentum of this

system J = x × p − qgr̂/c. The radial component J · r̂ = −qg/c is then quantised
yielding Dirac’s condition.

Third semi-classical derivation. This derivation considers a dyon of mass m carrying
an electric charge q1 and a magnetic charge g1, moving with velocity ẋ in the field of
a stationary dyon with charge q2 and g2 located at the origin [39]. Using the duality-
invariant form of the Lorentz force dp/dt = q1

(
E+ ẋ×B/c

)
+g1

(
B− ẋ×E/c

)
the total

angular momentum of this system is found to be J = x × p −
(
q1g2 − q2g1

)
r̂/c. The

radial component J · r̂ = −(q1g2 − q2g1)/c is then quantised yielding the Schwinger–
Swanziger condition q1g2 − q2g1 = n~c/2 which is a duality invariant form of Dirac’s
condition.

Note

A derivation of Equations (17)-(19), which is more pedagogical than that appearing
in the standard graduate textbooks (for example in Reference [21]), is available in the
author’s website: www.ricardoheras.com.

Acknowledgements

I wish to thank Professor Michael V. Berry for bringing my attention to the important
topic of wavefront dislocations and its connection with the Dirac strings.

Notes on contributor

Ricardo Heras is an undergraduate student in Astrophysics at University

College London. He has been inspired by Feynman’s teaching philosophy

that if one cannot provide an explanation for a topic at the undergraduate

level then it means one doesn’t really understand this topic. His interest in

understanding physics has led him to publish several papers in The Euro-

pean Journal of Physics on the teaching of electromagnetism and special

relativity. He has also authored research papers on magnetic monopoles,

pulsar astrophysics, history of relativity, and two essays in Physics Today.

For Ricardo the endeavour of publishing papers in physics represents the

first step towards becoming a physicist driven by “The pleasure of finding

things out.”

32

http://ricardoheras.com/


Appendix A. Derivation of Equations (3) and (12)

The curl of Equation (2) gives

∇×AL = ∇×
(
∇×

{∫

L

g dl′

|x− x′|

})

= ∇

(
∇·

{∫

L

g dl′

|x−x′|

})
−∇2

{∫

L

g dl′

|x−x′|

}

= g∇

∫

L
∇·

(
dl′

|x−x′|

)
−g

∫

L
∇

2

(
1

|x−x′|

)
dl′. (A1)

Using the result ∇ · (dl′/|x−x′|) = dl′ ·∇(1/|x−x′|), the first integral becomes

∫

L
∇ ·

(
dl′

|x−x′|

)
=

∫

L
∇

(
1

|x−x′|

)
· dl′

=−
∫

L
∇′

(
1

|x−x′|

)
· dl′

=− 1

|x−x′| . (A2)

Considering Equation (A2), the first term of Equation (A1) yields the field of the
magnetic monopole

g∇

∫

L
∇ ·

(
dl′

|x−x′|

)
= g∇

(
− 1

|x−x′|

)
=

g

R2
R̂, (A3)

where we have used ∇(1/|x−x′|) = −R̂/R2. The second term of Equation (A1) yields
the magnetic field of the Dirac string

−g
∫

L
∇

2

(
1

|x− x′|

)
dl′ = 4πg

∫

L
δ(x−x′) dl′, (A4)

where we have used ∇2(1/|x−x′|) = −4πδ(x−x′). The Addition of Equations (A3)
and (A4) yields Equation (3).

To derive Equation (12), we first take the curl of Equation (11),

∇×AL =∇×
(
∇×

{
ẑ

0∫

−∞

g dz′

|x−z′ẑ|

})

=∇

(
∇·

{
ẑ

0∫

−∞

g dz′

|x−z′ẑ|

})
−∇2

{
ẑ

0∫

−∞

g dz′

|x−z′ẑ|

}

= g∇

0∫

−∞

∂

∂z

(
dz′

|x−z′ẑ|

)
−g ẑ

0∫

−∞

∇2

(
dz′

|x−z′ẑ|

)
. (A5)
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To simplify the first term we may write

∂

∂z

(
1

|x−z′ẑ|

)
= − z − z′

(
x2 + y2 + (z − z′)2

)3/2 , (A6)

so that

0∫

−∞

∂

∂z

(
dz′

|x−z′ẑ|

)
= −

0∫

−∞

z − z′
(
x2 + y2 + (z − z′)2

)3/2 dz
′. (A7)

Consider the substitution u(z′) = x2 + y2 + (z − z′)2. Hence, du = −2(z − z′)dz′, and
the right-hand side of the integral in Equation (A7) takes the form

1

2
lim
β→∞

∫ u(z′=0)

u(z′=−β)

du

u3/2
= lim

β→∞

−1√
u

∣∣∣∣
u(z′=0)

u(z′=−β)

= − 1

|x| + lim
z′→−∞

1

|x− z′ẑ| = −
1

r
. (A8)

Using this result in the first term in Equation (A5) we obtain the monopole field

g∇

0∫

−∞

∂

∂z

(
dz′

|x−z′ẑ|

)
= g∇

(
− 1

r

)
=

g

r2
r̂. (A9)

To simplify the second term in Equation (A5) consider

∇2

(
1

|x−z′ẑ|

)
=− 4πδ(x−z′ẑ)

=− 4πδ(x)δ(y)δ(z−z′). (A10)

Using this equation in the second term of Equation (A5) we obtain the string field

−gẑ
0∫

−∞

∇2

(
dz′

|x−z′ẑ|

)
=4πgδ(x)δ(y)

{ 0∫

−∞

δ(z−z′)dz′
}
ẑ

=4πgδ(x)δ(y)Θ(−z)ẑ, (A11)

where in the last step we have used the integral representation of the step function

Θ(ξ−α) =
∫ ξ
−∞

δ(τ−α)dτ to identify the quantity within the brackets { } in Equation

(A11) as Θ(−z) =
∫ 0
−∞

δ(z− z′)dz′. Addition of Equations (A9) and (A11) yields
Equation (12).
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Appendix B. Derivation of Equation (13)

Using Equation (11), we obtain

AL = g∇× ẑ

0∫

−∞

dz′

|x− z′ẑ| = g

(
∂

∂y
x̂− ∂

∂x
ŷ

) 0∫

−∞

dz′

|x− z′ẑ|

= g

0∫

−∞

{
∂

∂y

(
x̂

|x−z′ẑ|

)
+

∂

∂x

(
ŷ

|x−z′ẑ|

)}
dz′. (B1)

Now,

∂

∂y

(
1

|x− z′ẑ|

)
=− y

(x2 + y2 + (z − z′)2)3/2
, (B2)

∂

∂x

(
1

|x− z′ẑ|

)
=

x

(x2 + y2 + (z − z′)2)3/2
. (B3)

Inserting these equations in Equation (B1) we obtain

AL =g
(
− yx̂+ xŷ

)
0∫

−∞

dz′

(x2 + y2 + (z − z′)2)3/2
. (B4)

The integral can be solved by a variable change and an appropriate substitution. We
can write (z − z′)2 = (z′ − z)2. Now we let u(z′) = z′ − z so that du = dz′. Hence, the
integral in Equation (B4) may be written as

lim
β→∞

∫ u(z′=0)

u(z′=−β)

du

(x2 + y2 + u2)3/2
. (B5)

An appropriate substitution for solving this integral is u(v) =
√

x2 + y2 tan(v), where

v = tan−1(u/
√

x2 + y2). This relation assumes
√

x2 + y2 6= 0, indicating that the
negative z-axis associated to the Dirac string has been avoided. It follows that du =
sec2(v)dv and then the integral in Equation (B5) becomes

lim
β→∞

∫ v(u(z′=0))

v(u(z′=−β))

√
x2 + y2 sec2(v)

(
(x2 + y2)(tan2(v) + 1)

)3/2 dv. (B6)

Using the identity sec2(v) = tan2(v) + 1, the denominator in Equation (B6) simplifies
to (x2 + y2)3/2 sec3(v). It follows

1

x2 + y2
lim
β→∞

∫ v(u(z′=0))

v(u(z′=−β))

dv

sec(v)
=

1

x2+y2
lim
β→∞

∫ v(u(z′=0))

v(u(z′=−β))
cos(v) dv

= lim
β→∞

sin(v)

x2 + y2

∣∣∣∣
v(u(z′=0))

v(u(z′=−β))

, (B7)
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where cos(v) = 1/ sec(v) has been used. Considering the identity sin
(
tan−1(α)

)
=

α/
√
α2 + 1, we can easily evaluate Equation (B7)

lim
β→∞

sin(v)

x2 + y2

∣∣∣∣
v(u(z′=0))

v(u(z′=−β))

=

(
1

x2 + y2

)
lim
β→∞

u
√

x2 + y2
√

u2

x2+y2 + 1

∣∣∣∣
u(z′=0)

u(z′=−β)

=

(
1

x2 + y2

)
lim
β→∞

z′ − z√
x2 + y2 + (z−z′)2

∣∣∣∣
z′=0

z′=−β

=
1

x2 + y2

(
1− z√

x2 + y2 + z2

)
. (B8)

From Equation (B8) in Equation (B4) we obtain

AL = g

(
− yx̂+ xŷ

)

x2 + y2

(
1− z√

x2 + y2 + z2

)
. (B9)

Considering spherical coordinates r =
√

x2 + y2 + z2, r sin θ =
√

x2 + y2, r cos θ =

z and φ̂ = (−yx̂ + xŷ)/(
√

x2 + y2), Equation (B9) takes the form AL = g[(1 −
cos θ)/(r sin θ)]φ̂, which is Equation (13).

Appendix C. Derivation of Equation (14)

Consider the first equality in Equation (14)

AL′−AL = g∇×
∮

C

dl′

|x− x′| . (C1)

Using Stoke’s theorem and ∇(1/|x−x′|) = −∇′(1/|x−x′|), Equation (C1) becomes

AL′ −AL =− g∇×
∫

S
∇′

(
1

|x−x′|

)
× da′

=∇×
(
∇×

{∫

S

g da′

|x−x′|

})

=∇

(
∇·

{∫

S

g da′

|x−x′|

})
−∇2

{∫

S

g da′

|x−x′|

}
. (C2)

Making use of ∇ · (da′/|x−x′|) = da′ ·∇(1/|x−x′|) Equation (C2) reads

AL′−AL = g∇

∫

S
∇

(
1

|x−x′|

)
·da′−g

∫

S
∇2

(
1

|x−x′|

)
da′

= g∇

∫

S

(x′−x) · da′
|x−x′|3 + 4πg

∫

S
δ(x−x′) da′, (C3)
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where we have used ∇(1/|x−x′|) = −(x−x′)/|x−x′|3 and ∇2(1/|x−x′|)=−4πδ(x−x′).
The integral in the first term of Equation (C3) is the solid angle [75]

Ω(x) =

∫

S

(x′−x) · da′
|x−x′|3 , (C4)

and therefore

AL′ −AL = g∇Ω+ 4πg

∫

S
δ(x−x′) da′. (C5)

The delta integral contribution vanishes at any point x not on the surface S and can
therefore be dropped [7]. Thus we obtain AL′ −AL = g∇Ω, which is Equation (14).
Discussions on Equation (C5) can be found in References [7,12,84].

Appendix D. Derivation of Equation (40)

Consider the first vector potential given in Equation (32), namely A′ = [g(1−
cos θ)/(r sin θ)]φ̂ which is valid for z < 0. For convenience, we express this potential in
cylindrical coordinates

A′ =
g

ρ

(
1− z√

ρ2 + z2

)
φ̂. (D1)

where we have used cos θ = z/
√

ρ2 + z2, and r sin θ = ρ, with ρ =
√

x2 + y2. A
regularised form of this potential can be obtained by making the replacements [58]:

1/ρ→ Θ(ρ− ε)/ρ, and z/
√

ρ2 + z2 → z/
√

ρ2 + z2 + ε2, where Θ is the step function
and ε > 0 is an infinitesimal quantity. It follows

A′
ε =

gΘ(ρ− ε)

ρ

(
1− z√

ρ2 + z2 + ε2

)
φ̂. (D2)

Clearly, in the limit ε → 0 we recover Equation (D1). Consider now the definition of
the curl of the generic vector F = F [0, Fφ(ρ, z), 0] in cylindrical coordinates given in
Equation (61). Using this definition in Equation (D2) we obtain

∇×A′
ε =−

gΘ(ρ− ε)

ρ

(
ρ2 + ε2

(ρ2 + z2 + ε2)3/2

)
ρ̂+

gΘ(ρ− ε)

ρ

(
z

(ρ2 + z2 + ε2)3/2

)
ẑ

+

{
gδ(ρ − ε)

ρ
− gzδ(ρ − ε)

ρ
√

ρ2 + z2 + ε2

}
ẑ

=
gΘ(ρ− ε)

(ρ2 + z2 + ε2)

(
ρρ̂+ zẑ√
ρ2 + z2 + ε2

)
− ε2 gΘ(ρ−ε)ρ̂

ρ(ρ2 + z2 + ε2)3/2

+

{
gδ(ρ − ε)

ρ
− gzδ(ρ − ε)

ρ
√

ρ2 + z2 + ε2

}
ẑ. (D3)
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In the last term enclosed within the brackets { }, we add the exact zero quantity[
gδ(ρ − ε)/ρ − gδ(ρ − ε)/ρ

]
ẑ ≡ 0, and obtain

∇×A′
ε =

gΘ(ρ− ε)

(ρ2 + z2 + ε2)

(
ρρ̂+ zẑ√
ρ2 + z2 + ε2

)
+

2g δ(ρ − ε)ẑ

ρ

− ε2 gΘ(ρ−ε)ρ̂
ρ(ρ2 + z2 + ε2)3/2

− g δ(ρ− ε)

ρ

(√
ρ2 + z2 + ε2 + z√
ρ2 + z2 + ε2

)
ẑ. (D4)

This is a regularised form of the magnetic field produced by the potential A′
ε. The

first two terms of Equation (D4) are the only non-vanishing terms in the limit ε→ 0.
The third term is shown to vanish easily because there is a term ε2 in the numerator.
However, it is not clear why the last term should vanish. Let us analyse this term.
Consider an arbitrary point z0 on the negative z-axis. For small ε, we can make the
replacement [22]:

√
ρ2 + z2 + ε2+z → (ρ2+ε2)/(2z0). With this replacement, the last

term in Equation (D4) becomes

(
g δ(ρ− ε)ρ

2z0
√

ρ2 + z2 + ε2
+

g δ(ρ− ε) ε2

2ρz0
√

ρ2 + z2 + ε2

)
ẑ. (D5)

In the limit ε → 0, it follows that Equation (D5) vanishes because ε2 → 0 and
δ(ρ)ρ = 0. Hence,

lim
ε→0

∇×A′
ε = lim

ε→0

{
gΘ(ρ− ε)

(ρ2 + z2 + ε2)

(
ρρ̂+ zẑ√
ρ2 + z2 + ε2

)
+

2gδ(ρ − ε)ẑ

ρ

}

= g
r̂

r2
+ 4πgδ(x)δ(y)Θ(−z)ẑ, (D6)

where we have used r̂ = (ρρ̂+zẑ)/(
√

ρ2 + z2), and inserted Θ(−z) = 1 to specify that
this expression is valid only for z < 0.

Appendix E. Derivation of Equation (89)

Consider the electromagnetic angular momentum of the Thomson dipole whose con-
figuration is shown in Fig. 10. The electric and magnetic fields of this dipole are

E = q
(x+ a/2)

|x+ a/2|3 , B = g
(x− a/2)

|x− a/2|3 . (E1)

These fields satisfy

∇ · E =4πqδ(x + a/2), ∇×E = 0, (E2)

∇ ·B =4πgδ(x − a/2), ∇×B = 0. (E3)
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In particular, the electric field can be expressed as the gradient of the electric potential
E = −∇Φ, where

Φ(x) =
q

|x+ a/2| . (E4)

Using E = −∇Φ, we write E × B = −∇Φ × B, which combines with ∇ × (ΦB) =
Φ∇×B+∇Φ×B to obtain E×B = −∇× (ΦB). If we define the vector W = ΦB,
then E ×B = −∇×W. Using this expression in the integrand of Equation (88), we
obtain

x× (E×B) = −x× (∇×W). (E5)

To write Equation (E5) in an appropriate form, we can use the following identity
expressed in index notation [61]:

[
x×

(
∇×W

)]i
= − ∂j

(
xjW i − 2W jxi

)
+ ∂i

(
xjW

j
)
− 2xi∂jW

j. (E6)

Here summation convention on repeated indices is adopted and εijk is the Levi-Civita
symbol with ε123 = 1 and δij is the Kronecker delta. Equation (E6) can be readily
verified. First we write

[
x×

(
∇×W

)]i
= εijkxj

(
∇×W

)
k

= εijkxjεklm∂lWm

=(δilδ
j
m − δjl δ

i
m)xj∂

lWm

=xm∂iWm − (xm∂m)W i, (E7)

where we have used the identity εijkεklm = δilδ
j
m− δjl δ

i
m. Now, consider the identically

zero quantities

2
(
∂mWmxi − ∂mWmxi

)
≡ 0, (E8)

(
∂ixmWm + 2Wm∂mxi − ∂mxmW i

)
≡ 0. (E9)

Adding Equations (E8) and (E9) to Equation (E7), we obtain Equation (E6). When
Equation (E6) is integrated over a volume, the first two terms of the right-hand side
can be transformed into surface integrals which are shown to vanish for a large r.
Therefore,

∫

V

[
x×

(
E×B

)]i
d3x =2

∫

V
xi∂jW

j d3x = 2

∫

V
xi(∂jΦB

j +Φ∂jB
j) d3x

=− 2

∫

V
xi(EjB

j ) d3x+ 2

∫

V
xiΦ(∂jB

j) d3x. (E10)

Using Equation (E10) in Equation (88), we obtain

LEM = −
1

2πc

∫

V
x
(
E·B

)
d3x+

1

2πc

∫

V
xΦ(∇·B) d3x =

1

2πc

∫

V
xΦ(∇·B) d3x, (E11)
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where the integral in the first term has vanished because integrand is an odd function
of x for the chosen origin. Using Equations (E3) and (E4), we substitute ∇ · B =
4πgδ(x − a/2) and Φ = q/|x + a/2| into the second integral, obtaining the expected
result

LEM =
2qg

c

∫

V
δ(x− a/2)

(
x

|x+ a/2|

)
d3x =

2qg

c

x

|x+ a/2|

∣∣∣∣
x=a/2

=
qg

c
â. (E12)
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[14] Alvarez–Gaumé L, Hassan SF. Introduction to S-Duality in N = 2 supersym-

metric gauge theories (A Pedagogical Reviewof the Work of Seiberg and Witten).
Fortsch Phys. 1997; 45: 159236. arXiv:hep-th/9701069.

[15] Lynden–Bell D, Nouri–Zonoz M. Classical monopoles: Newton, NUT space, gravomag-
netic lensing, and atomic spectra. Rev Mod Phys. 1998; 70: 427–445. arXiv:gr-qc/9612049.

[16] Milton KA. Theoretical and experimental status of magnetic monopoles. Rep Prog Phys.
2006; 69: 1637–1711. arXiv:hep-ex/0602040.

[17] Rajantie A. Introduction to magnetic monopoles. Cont Phys. 2012; 53: 195–211. arXiv:
0906.3219.

[18] Jackson JD. Classical electrodynamics. 3rd ed. New York (NY): John Wiley & Sons: 1999.
[19] Schwinger J, DeRaad Jr. LL, Milton KA, et al. Classical electrodynamics. Reading (MA):

Perseus Books: 1998.
[20] Müller–Kirsten HJW. Electrodynamics: An introduction including quantum effects. Sin-

gapure: World Scientific: 2004.
[21] Sakurai JJ. Modern quantum mechanics. Reading (MA): Addison–Wesley; 1994.
[22] Felsager B. Geometry, particles and fields. NewYork (NY): Springer; 1998.
[23] Banks T. Modern quantum field theory: a concise introduction. Cambridge: Cambridge

University Press; 2008.
[24] Nakahara M. Geometry, topology and physics. 2nd ed. London: IoP Publishing; 2003.
[25] Zee A. Quantum field theory in a nutshell. Princeton: Princeton University Press; 2010.

40

http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1103/PhysRev.74.817
https://doi.org/10.1007/b94800
https://arxiv.org/abs/hep-ph/0310102
https://doi.org/10.1088/0034-4885/41/9/001
https://doi.org/10.1088/0034-4885/41/9/001
https://doi.org/10.1007/BF02724347
https://doi.org/10.1146/annurev.ns.34.120184.002333
https://doi.org/10.1016/0370-1573(88)90098-1
https://arxiv.org/abs/hep-th/9603086
https://doi.org/10.1002/prop.2190450302
https://arxiv.org/abs/hep-th/9701069
https://doi.org/10.1103/RevModPhys.70.427
https://arxiv.org/abs/gr-qc/9612049
https://doi.org/10.1088/0034-4885/69/6/R02
https://doi.org/10.1088/0034-4885/69/6/R02
https://arxiv.org/abs/hep-ex/0602040
https://doi.org/10.1080/00107514.2012.685693
https://arxiv.org/abs/1204.3077
https://arxiv.org/abs/1204.3077


[26] Lacava F. Classical electrodynamics: from image charges to the photon mass and magnetic
monopoles. Switzerland: Springer International Publishing; 2016.

[27] Goodstein DL. Richard P. Feynman, teacher. Phys Today. 1989; 42: 70–75.
[28] Kragh H. The concept of the monopole. A historical and analytical case study.

Stud Hist Phil Sci A. 1981; 12: 141–172.
[29] Polchinski J. Monopoles, duality, and string theory. Int J Mod Phys A. 2004; 19: 145-154.

arXiv:hep-th/0304042.
[30] Dirac PAM. The monopole concept. Int J Theor Phys. 1978; 17: 235–247.
[31] Letter from W. Pauli to N. Bohr, 5 March 1949. In W. Pauli, Scientific Correspon-

dence with Bohr, Einstein, Heisenberg a.o. Volume III: 1940-1949, Ed. K. von Meyenn,
Sources in the History of Mathematics and Physical Sciences, Band III (1993).

[32] Kragh H. Dirac: a scientific biography. Cambridge: Cambridge University Press; 1990,
Chapter 10.

[33] Saha MN. The origin of mass in neutrons and protons. Ind J Phys. 1936; 10: 145.
[34] Thomson JJ. On momentum in the electric field. Phil Mag. 2009; 8: 331–356.
[35] Thomson JJ. Elements of themathematical theory of electricity and magnetism. 4th ed.

Cambridge: Cambridge University Press; 1904.
[36] Wilson HA. Note on Dirac’s theory of magnetic poles. Phys Rev. 1949; 75: 308.
[37] Saha MN. Note on Dirac’s theory of magnetic poles. Phys Rev. 1949; 75: 309.
[38] Fierz M. Zur theorie magnetisch geladener teilchen. Helv Phys Acta. 1944; 17: 27.
[39] Schwinger J. A magnetic model of matter. Science. 1969; 165: 757–761.
[40] Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory.

Phys Rev. 1959; 115: 485–491.
[41] Kunstatter G. Monopole charge quantization and the Aharonov–Bohm effect.

Can J Phys. 1984; 62:737–740.
[42] Weinberg EJ. Classical solutions in quantum field theory: solitons and instantons in high

energy physics. Cambridge: Cambridge University Press; 2012. Chapter 5.
[43] Dirac PAM. The Lagrangian in quantum mechanics. S Phys Z Sowjetunion. 1933; 3: 64.
[44] Feynman RP. The principle of least action in quantum mechanics [Ph.D. thesis]. Princeton

University; 1942.
[45] Feynman RP. Space–time approach to non–relativistic quantum mechanics. Rev Mod

Phys. 1948; 20: 367–387.
[46] Wu TT, Yang CN. Concept of nonintegrable phase factors and global formulation of gauge

fields. Phys Rev D. 1975; 12: 3845–3857.
[47] Goldhaber AS. Role of Spin in the monopole problem. Phys Rev. 1965; 140: B1407-B1414.
[48] Wilczek F. Magnetic flux, angular momentum, and statistics. Phys Rev Lett. 1982; 48:

1144–1146.
[49] Kobe DH. Comment on ‘Magnetic flux, angular momentum, and statistics’. Phys Rev

Lett. 1982 ;49: 1592.
[50] Jackiw R. Three–cocycle in mathematics and physics. Phys Rev Lett. 1985; 54: 159–162.
[51] Jackiw R. Dirac’s magnetic monopoles (again). Int J Mod Phys A. 2004; 19S1: 137–143.

arXiv:hep-th/0212058.
[52] Jadczyk AZ. Magnetic charge quantization and generalized imprimitivity systems.

Int J Theor Phys. 1975; 14: 183–192.
[53] t’ Hooft G. Magnetic monopoles in unified gauge theories. Nucl Phys B. 1974; 79: 276–

284.
[54] Polyakov AM. Particle spectrum in quantum field theory. JETP Lett. 1974; 20: 194.
[55] Jan Smit. Introduction to quantum fields on a lattice. Cambridge: Cambridge University

Press; 2002.
[56] Preskill J. Magnetic monopoles in particle physics and cosmology. In: E Kolb, D Schramm,

M Turner, editors. Inner space/outer space. Chicago: University Chicago Press; 1985. p. 373.
[57] Goldhaber AS, Heras R. Dirac Quantization Condition Holds with Nonzero Photon Mass.

arXiv:1710.03321.
[58] Rowe EGP. Green’s functions in space and time. Am J Phys. 1979; 47: 373.

41

https://doi.org/10.1063/1.881195
https://doi.org/10.1016/0039-3681(81)90017-0
https://doi.org/10.1142/S0217751X0401866X
https://arxiv.org/abs/hep-th/0304042
https://doi.org/10.1007/BF00672870
https://doi.org/10.1007/978-3-540-78802-7
http://dx.doi.org/10.1007/BF02838849
https://doi.org/10.1080/14786440409463203
https://doi.org/10.1103/PhysRev.75.309
https://doi.org/10.1103/PhysRev.75.1968
https://doi.org/10.1126/science.165.3895.757
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1139/p84-101
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/PhysRev.140.B1407
https://doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1103/PhysRevLett.49.1592
https://doi.org/10.1103/PhysRevLett.49.1592
https://doi.org/10.1103/PhysRevLett.54.159
https://doi.org/10.1142/9789812703996_0011
https://arxiv.org/abs/hep-th/0212058
https://doi.org/10.1007/BF01807666
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1016/0550-3213(74)90486-6
https://arxiv.org/abs/1710.03321
https://doi.org/10.1119/1.11827


[59] MacKenzie R. Path Integral Methods and Applications. arXiv:quant-ph/0004090.
[60] Adawi I. Thomson’s monopoles. Am J Phys. 1976; 44: 762.
[61] Brownstein KR. Angular momentum of a charge monopole pair. Am J Phys. 1989; 57:

420–421.
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